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Abstract:

Introduction:

The score statistic Z(θ)  and the maximin efficient robust test statistic ZMERT  are commonly used in genetic association study, but
according to our knowledge there is no formal comparison of them.

Methods:

In this report, we compare the asymptotic behavior of Z(θ) and ZMERT, by computing their Asymptotic Relative Efficiencies (AREs)
relative  to  each  other.  Four  commonly  used  ARE  measures,  the  Pitman  ARE,  Chernoff  ARE,  Hodges-Lehmann  ARE  and  the
Bahadur  ARE are  considered.  Some modifications  of  these  methods are  made to  simplify  the  computations.  We found that  the
Chernoff, Hodges-Lehmann and Bahadur AREs are suitable for our setting.

Results and Conclusion:

Based on our study, the efficiencies of the two test statistic varies for different criterion used, and for different parameter values
under  the  same criterion,  so  each test  has  its  advantages  and dis-advantages  according to  the  criterion used and the  parameters
involved,  which are described in the context.  Numerical  examples are  given to illustrate  the use of  the two statistics  in  genetic
association study.

Keywords: Asymptotic relative efficiency, Genetic association study, Maximin efficiency robust test, Score test Z(θ), Test statistic
Zmert, Pitman ARE, Chernoff ARE.

1. INTRODUCTION

In genetic association studies, several test statistics are often used, including the score test Z(θ) and the maximin
efficient  robust  test  statistic  ZMERT.  Although  numerical  behavior  of  the  two  tests  are  reported  in  various  genetic
association studies based on simulations, to our knowledge, a formal theoretical comparison of the two tests hasn’t been
seen in the literature. It is of meaning to compare their asymptotic performances. Although for likelihood ratio based
test statistic for testing hypothesis of simple null versus simple alternative, there is a uniformly most powerful test under
some  regularity  conditions.  However,  most  test  statistics  are  not  constructed  directly  from  likelihood  ratio,  the
hypothesis are composite, and there is generally no such optimal test. Therefore, the classical method to compare any
two test statistics is to evaluate the Asymptotic Relative Efficiency (ARE) between them.
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The ARE is a well studied area, with vast literatures and numerous different definitions. But often the computation
of ARE is very difficult in the general case, some of the classical methods for ARE require that the test statistics have
some  standard  forms,  such  as  they  have  the  same  asymptotic  distribution,  or  have  the  forms  of  i.i.d.  summations.
However, in practice, such as in genetic association studies, some test statistics do not have these forms. Sitlani and
McKnight  [1]  studied  AREs  for  the  trend  test  under  different  models  and  stratifications.  In  this  communication,
wecompare  the  asymptotic  behavior  of  two  commonly  used  test  statistics  the  score  statistic  Z(θ)  and  the  maximin
efficient robust test statistic ZMERT, arise in case-control genetic association study, as given in Zheng, Li and Yuan [2],
hereafter ZLY, by evaluate their AREs relative to each other. Four commonly used ARE measures, the Pitman ARE,
Chernoff ARE, Hodges-Lehmann ARE and the Bahadur ARE are considered. Pitman’s ARE does not apply directly.
We found the Chernoff, Hodges-Lehmann and the Bahadur AREs are suitable for our setting. Some modifications of
these methods are made to simplify the computations.

Existing studies on ARE are mainly focused on two categories. One is to compare efficiencies of estimators of the
same  parameter;  the  other  is  to  compare  test  statistics  of  the  same  hypothesis,  in  which  the  test  statistics  may  not
estimate the same parameter. The latter study can be under the assumption that the test statistics in comparison are
asymptotic normality. In this case, the ARE’s can often be easily computed. There are also methods for compare ARE
of  different  test  statistics  in  general,  in  which  different  test  statistics  of  the  same  hypothesis  may  have  different
asymptotic  distributions.  In  this  general  case,  Pitman,  Bahadure  and  Hodges-Lehmann  proposed  different  ways  to
compute the ARE, and it is often difficult. Although, when the test statistics have the same asymptotic distribution, the
ARE can be  computed  easily.  We also  give  a  simple  definition  of  ARE,  so  that  it  can  be  computed  in  the  case  of
different asymptotic distributions, as long as the asymptotic distributions of the test statistics are known.

In Section 2, we describe the background of the genetic association study problem and a brief review of the classical
definitions of ARE. In Section 3 we compare the ARE of the test statistics arose from our genetic association study. We
found  that  he  performances,  or  the  efficiencies  of  the  two  test  statistic  varies  for  different  criterion  used,  and  for
different parameter values under the same criterion, which described in the context. Section 4 gives brief numerical
examples  in  simulation  and  application  of  the  two  tests  in  genetic  association  study,  from  our  previous  study,  to
illustration their usage.

2. BACKGROUND

Assume θ 0 and θ1 are known from the problem of interest and/or scientific knowledge. Given λ1 = λ ≥ 1, λ2 can be
written as . We treat η as a nuisance parameter not  estimable  under H 0 λ = 1, but

  it is estimable under . Then the log-likelihood becomes. ln (λ, η, θ) The score test statistic H 0 λ = 1 for is given by;

Denote the log-likelihood function as,  where  Yi  is the outcome,

 are the parameters of interest,  is a vector of parameters (m ≥ 0) for the covariate Xi =
(x1,....,xim)T,  and  n  is  the  sample  size.  The  goal  is  to  test  the  null  hypothesis   against  the
alternative H1 (λ1, λ2)  \ {(1, 1)}, where  has two edges with known slopes θ 0 and θ1, and the null point (1, 1) is on
the boundary of . We assume - ∞ < θ 0 < θ1 <∞ and the endpoints θ 0 and θ1 satisfy some constraints as specified in
ZLY. If θ1 = ∞ which corresponds to a vertical edge, we can switch λ1 and λ2 and define new (θ1, θ2) so - ∞ < θ 0 < θ1 <∞
is satisfied by the new (θ1, θ2). For example, we can write λ1 = 1 + (λ2 - 1)/ λ1

* (λ2-1) and λ1 = 1 + (λ2 - 1)/ θ 0 = 1 + θ 0
* (λ2

- 1) where - ∞ < θ 0 < θ1 <∞.

(1)

where  is the MLE of η under H 0. It would be difficult to deal with ln (λ, η, θ) because θ in Z (θ) is implicitly
expressed.

So we work with ln (λ,1 - θ + θλ, η), where θ is explicitly expressed. It is convenient to view ln (λ, η, θ) as a tri-
variate function with variables x1 = λ, x2 = 1 - θ + θλ and x3 = η. Denote ln,u = ∂ln/ ∂xu for, u = 1,2,3, ln, uv = ∂2ln/∂xu∂xv for
u  =  1,2  and,  v  =  1.2.3,  and  ln.33  =  ∂2ln/∂x3∂xT

3.  Assume

𝑙𝑛(𝜆1, 𝜆2, 𝜂) = ∑ log 𝑓
𝑛

𝑖=1
(𝑌𝑖|𝜆1, 𝜆2, 𝜂𝑇𝑋𝑖) 

(𝜆1, 𝜆2) ∈ Λ ⊂ 𝑅2 
𝐻0: (𝜆1, 𝜆2) = (1,1) 

ΛΛ
Λ

𝑍(𝜃) =

𝜕
𝜕𝜆

𝑙𝑛(𝜆, 𝜂, 𝜃)|𝐻0,�̂�𝑛

{𝑉𝑎𝑟𝐻0,�̂�𝑛
(

𝜕
𝜕𝜆

𝑙𝑛(𝜆, 𝜂, 𝜃))}
1/2

, 

�̂�𝑛 

    

𝜆2 = 1 − 𝜃 + 𝜃𝜆, 𝜃 ∈ [𝜃0, 𝜃1]
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and v = 3. Denote Lvu (η) = EHnllvu (1.1, η).

Suppose we have a family of asymptotically normally distributed tests , where 
under  H1  λ  =  1  for  a  given  ,  which  determines  the  data-generating  model  under  H  0:  λ  =  1.  When

 is  the  true  value Z(θ()), is asymptotically most powerful (optimal). In this case, θ(1) ≠ θ(0) when is
used, the Pitman ARE of Z(θ(1)) relative to Z(θ(1)) is given by (Gastwirth [3, 4])

(2)

where is the asymptotic null correlation coefficient between and. Let be a set of all convex linear combinations of. A
simple robust test derived under efficiency robust theory (Gastwirth [3, 4]; Birnbaum and Laska [5],) is the maximin
efficient robust test (MERT), denoted as. When, is given by;

(3)

When T  0 has more than two members, generally exists and is unique (Gastwirth [3]), but its computation needs
quadratic programming methods (Rosen [6]). However, when there is an extreme pair (Z(θi), Z(θ i)) in T  0i.e. pθi,  θi =

 is MERT for if and only if (Gastwirth 
 [7]).

and thus

(4)

That is, the MERT reaches the maximin ARE due to model uncertainty. The MERT was first derived for linear rank
tests  for  the  two-sample  problem  (Gastwirth  [3];  Birnbaum  and  Laska  [5],)  and  later  extended  to  a  family  of
asymptotically  normally  distributed  tests  (Gastwirth  [4]).

The Z (θ) statistic has the following property (ZLY): Let. Then where and .

Let  be the MLE of η under H 0, and  be that of (η, λ) under H1. For given θ, the X2 likelihood ratio
test statistic is . For fixed θ, the number of parameters under 
H1 is just 1 more than that under H 0, so by Wilk’s theorem, under H 0,

the chi-squared distribution with one degree of freedom. The likelihood ratio test is also widely used in genetic
association studies, its properties, including its ARE is well studied in the literature, so we will not investigate it here.

Let  the MLE  here  0  presents  a  vector  of  0’s. Let η  0 be the true value
(unknown) of η under either H 0 or H1, we define the score function as;

and the test statistic for H 0 as;

𝑙𝑛,𝑢𝑣 = 𝑙𝑛,𝑣𝑢 for 𝑢, 𝑣 = 1,2, 𝑙𝑛,𝑢𝑣 = 𝑙𝑛,𝑣𝑢
𝑇  for 𝑢 = 1,2 

𝑇0 = {𝑍(𝜃): 𝜃 ∈ [𝑎, 𝑏]} 

𝜃 ∈ [𝑎, 𝑏] 

𝜃 = 𝜃(0) ∈ [𝑎, 𝑏] 

𝑍(𝜃)
𝐷
→ 𝑁(0,1) 

𝑒(𝑍(𝜃(1)), 𝑍(𝜃(0))) = 𝜌
𝜃(0),𝜃(1)
2 , 

𝑍MERT = (𝑍(𝜃𝑖) + 𝑍(𝜃𝑗))/ {2(1 + 𝜌𝜃𝑖,𝜃𝑗
)}

1/2
. 

inf
 𝜃,𝜃′∈[𝑎,𝑏] 𝜌

𝜃,𝜃′
> 0, then 𝑍MERT = (𝑍(𝜃𝑖) + 𝑍(𝜃𝑗))/ {2(1 + 𝜌𝜃𝑖,𝜃𝑗

)}
1/2

 

𝜌𝜃𝑖,𝜃 + 𝜌𝜃𝑗,𝜃 ≥ 1 + 𝜌𝜃𝑖,𝜃𝑗
,    ∀ 𝜃 ∈ [𝑎, 𝑏]. 

𝑒(𝑍MERT, 𝑍(𝜃(0))) = sup 𝑍∈𝑇1 inf 𝜃∈[𝑎,𝑏]𝑒 (𝑍, 𝑍(𝜃)). 

𝜃 ∈ [𝜃𝑖 , 𝜃𝑗] ⊆ [𝜃0, 𝜃1] 

𝑍(𝜃) = ∑ 𝑊𝑙

𝑙=𝑖,𝑗

(𝜃)𝑍(𝜃𝑙), 

where 𝑊𝑖(𝜃)= {𝜎(𝜃𝑖)/𝜎(𝜃)}{(𝜃𝑗 − 𝜃)/(𝜃𝑗 − 𝜃𝑖)} and 𝑊𝑗(𝜃) = {𝜎(𝜃𝑗)/𝜎(𝜃)}{(𝜃 − 𝜃𝑖)/(𝜃𝑗 − 𝜃𝑖)}. 

�̂�0,𝑛 (�̂�1,𝑛, �̂�𝑛) 

𝑇(𝜃) = 2[𝑙𝑛(�̂�𝑛, 1 − 𝜃 + 𝜃�̂�𝑛, �̂�1,𝑛) − 𝑙𝑛(1,1, �̂�0,𝑛)] 

𝑇(𝜃)
𝐷
→ 𝜒1

2, 

(𝜕𝑙𝑛/𝜕𝜂)|𝐻0,�̂�𝑛
= 𝑙𝑛,3(1,1, �̂�𝑛) = 𝟎 

𝑈𝑛(1,1, �̂�𝑛) =
𝜕𝑙𝑛

𝜕𝜆
|𝐻0,�̂�𝑛

= 𝑙𝑛,1(1,1, �̂�𝑛) + 𝜃𝑙𝑛,2(1,1, �̂�𝑛) 
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(5)

where  “~”  means  asymptotically  equivalent,  in  the  above   is  replaced  by

 it  is  approximated  by  n-1ln,  vu (1.1, η).

Denote
 

. For a vector v (v1, v2, v3)
T, denote . be the 

 true density of the data y. The null model f (1, 1, η) is and the alternative model is .The following

  notation is also used under H1. For fixed, (λ, θ) let;

(6)

Under H1, the empirical version of η 0 is just . We denote the Fisher information and its inverse in the blocked
forms as;

Below we give a brief review of the notions of ARE for test statistics in the general case, more detailed account can
be found in Serfling (1980) [8] and Nikitin (2011) [9].

The calculation of the existing of versions of ARE is generally not easy, as in the examples (Serfling, 1980 [8];
Nikitin,  1995 [10]; van der Varrt,  1998 [11]).  We only point out that the Pitman ARE is based on the central limit
theorem for test statistics, that the Bahadur ARE requires the large deviation asymptotics of test statistics under the null-
hypothesis, while the Hodges-Lehmann ARE is connected with large deviation asymptotics under the alternative. Each
type of ARE has its own advantage and dis-advantage, and the different notions of ARE are not always give consistent
conclusion.

If the condition of asymptotic normality (or common asymptotic distribution) fails, considerable difficulties will
arise in calculating the Pitman ARE as it may not at all exist or may depend on α and β. Usually one considers limiting
Pitman ARE as α → 0 Wieand (1976) [12] established the correspondence between this kind of ARE and the limiting
approximate Bahadur efficiency which is easy to compute.

The Bahadur (1960) [13] ARE is to fix the power of tests and compare the exponential rate of decrease of their sizes
for  the  increasing  number  of  observations  and  fixed  alternative.  Its  computation  is  always  non-trivial,  and  heavily
depends on advancements in large deviation theory, as in Dembo and Zeitouni (1998) [14] and Deuschel and Strook
(1989) [15].

It is proved that under some regularity conditions the likelihood ratio statistic is asymptotically optimal in Bahadur
sense (Bahadur, 1967 [16]; Arcones, 2005 [17]). Often the Bahadur ARE is difficult to compute for any alternative but
it is possible to calculate the limit of Bahadur ARE as θ approaches the null-hypothesis, to obtain the local Bahadur

𝑧(𝜃) =
𝑈𝑛(1,1, �̂�𝑛)

{𝑉𝑎𝑟𝐻0
(𝑈𝑛(1,1, �̂�𝑛))}1/2

∼
𝑛−1/2𝑈𝑛(1,1, �̂�𝑛)

{(1, 𝟎)𝐼−1(𝜂0)(1, 𝟎)𝑇}−1/2
 

   
            =

𝑛−1/2{𝑙𝑛,1(1,1,�̂�𝑛)+𝜃𝑙𝑛,2(1,1,�̂�𝑛)}

(𝐴𝜂0𝜃2+2𝐵𝜂0𝜃+𝐶𝜂0)
1/2 ,     

 

𝐼−1(𝜂0), 𝐴𝜂 = 𝐿23(𝜂)𝐿33
−1(𝜂)𝐿32 − 𝐿22(𝜂), 𝐵𝜂 = 𝐿13(𝜂)𝐿33

−1(𝜂)𝐿31(𝜂) − 𝐿12(𝜂) and 𝐶𝜂 = 𝐿13(𝜂)𝐿33
−1(𝜂)

𝐿31(𝜂) − 𝐿11(𝜂). Recall that 𝐿𝑣𝑢(𝜂) = 𝐸𝐻0
𝑙1,𝑣𝑢(1,1, 𝜂), and 

𝑊 = (
1 0

𝑊0(𝜃) 𝑊1(𝜃)
0 1

) ||𝑣|| = ∑ 𝑣𝑖
3
𝑖=1 . Let 𝑓(𝑦|𝜆, 1 − 𝜃 + 𝜃𝜆, 𝜂) 

𝑓(⋅ |𝜆, 1 − 𝜃 + 𝜃𝜆, 𝜂) 

𝜂𝜃 = 𝛼
Δ

(𝜆, 𝜃) = arg sup
𝜂

∫ 𝑓 (𝑥|𝜆, 1 − 𝜃 + 𝜃𝜆, 𝜂0) log 𝑓 (𝑥|1,1, 𝜂)𝑑𝑥. 

�̂�𝑛 

𝐼(𝜂0) = (
𝐼𝜆𝜆 𝐼𝜆𝜂

𝐼𝜂𝜆 𝐼𝜂𝜂
) ,    and   𝐼−1(𝜂0) = (𝐼𝜆𝜆 𝐼𝜆𝜂

𝐼𝜂𝜆 𝐼𝜂𝜂
). 

Let 𝜎2(𝜃) = {(1, 𝟎)𝐼−1(𝛼0)(1, 𝟎)𝑇}−1 = (𝐼𝜆𝜆)−1,  

𝑠(𝜃, 𝜂) = 𝑙1,1(1,1, 𝜂) + 𝜃𝑙1,2(1,1, 𝜂) − (𝐿13
𝑇 (𝜂) + 𝜃𝐿23

𝑇 (𝜂))𝐿33
−1(𝜂)𝑙1,3(1,1, 𝜂), 

𝜇(𝜆, 𝜃) = 𝐸𝐻1,𝜂0
(𝑠(𝜃, 𝜂𝜃)), 𝑢(𝜆, 𝜃) = 𝑠Δ (𝜃, 𝜂𝜃) − 𝜇(𝜆, 𝜃), 𝜏2(𝜆, 𝜃) = 𝐸𝐻1,𝜂0

(𝑢(𝜆, 𝜃))2, �̃�2(𝜆, 𝜃) =

𝜏2(𝜆, 𝜃)/𝜎2(𝜃), and Ω̃ = (�̃�𝑖𝑗)2×2 with �̃�11 = �̃�2(𝜆, 𝜃0), �̃�22 = �̃�2(𝜆, 𝜃1), and �̃�12 =

𝐸𝐻1,𝛼0
{𝑢(𝜆, 𝜃0)𝑢(𝜆, 𝜃1)}/{𝜎(𝜃0)𝜎(𝜃1)}. Th e empiri cal vers ion of Ω̃  is give n by Ω̃𝑛, where 𝜂𝜃 in Ω̃ is 

 replacedby �̂�𝑛.  Notetha twith 𝜂𝜃 = 𝛼(𝜆, 𝜃) define d in theabove, 𝜇(𝜆, 𝜃) = ∫ 𝑠 (𝑥|𝜃, 𝜂𝜃)𝑓(𝑥|𝜆, 1 − 𝜃 +

𝜃𝜆, 𝜂0)𝑑𝑥.  
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efficiency.

The  Hodges-Lehmann  ARE  is,  in  contrast  to  Bahadur  efficiency,  it  fixes  the  level  of  tests  and  compares  the
exponential rate of decrease of their type-II errors for the increasing number of observations and fixed alternative. The
computation of Hodges-Lehmann ARE is also difficult as it requires large deviation asymptotics of test statistics under
the alternative.

The drawback of Hodges-Lehmann efficiency is that most two-sided tests like Kolmogorov and Cramer-von Mises
tests are all asymptotically optimal, and hence one cannot discriminate among them. On the other hand, under some
regularity  conditions  the  one-sided  tests,  such  as  linear  rank  tests  can  be  compared,  and  their  Hodges-Lehmann
efficiency coincides locally with Bahadur efficiency (Nikitin, 1995 [10]).

The Chernoff ARE is to minimize, asymptotically, a linear combination of type I and type II errors, it  does not
depend on the nominal level nor the power. But it basically only applies to test statistics of the form of i.i.d. summation.

The local ARE is much easier to compute than the previous ones, but it  only applies to test statistics which are
asymptotical  normal  with  rate  .  We will  see  that  some test  statistics  used in  genetic  association studies  do not
satisfy this condition.

Besides  the  four  commonly  used  AREs  for  hypothesis  tests  described  above,  there  are  some  other  interesting
methods. Hoeffding’s (1965) ARE [18], based on the work of Sanov (1957) [19], is theoretically appealing, but ony
applies to multinomial data; Rubin and Sethurman ARE (1965) [20] is based on Bayes risk; others including Kallenberg
ARE (1983) [21], and the Borovkov-Mogulskii ARE (1993) [22], etc.

3. ARE OF TWO TESTS IN GENETIC ASSOCIATION STUDIES

In this section, we investigate the uses of Pitman ARE, Chernoff ARE, Hodges-Lehmman ARE, and Bahadur ARE
to  the  commonly  used  statistics  in  genetic  association  analysis.  We  focus  on  the  statistics  used  in  ZLY,  Z(θ)  and,
ZMERTand refer the notations there. Although some other commonly used test statistics in genetic association studies,
such as the likelihood ratio statistic (chi-squared statistic), we will not discuss them here, as most of them are well
studied in the literatures.

Pitman ARE.  Consider testing  Let  Sn   be  a  test  statistic  based on data of size n,
with mean µn (λ) and standard deviation µn (λ). To use this method the following conditions are needed.

(P1). For some continuous strictly increasing distribution function F independent of λ, and some, δ > 0 as n → ∞,

(P2). For , is k times differentiable, with 

(P3). For d(n) → ∞ some and some constant 

(P4). For 

Pitman appears as the first to introduce the notion of ARE for tests in his unpublished lectures, and the following
result was stated in Noether’s works.

(Pitman, 1949  [23];  Noether, 1950  [24]).  Assume (P1)-(P4), that  αn =  Pλ 0 (Sn >
then

, if and only if

(7)

(ii) Let S1,n and S2,n each satisfy (P1)-(P4) with the common F, K, n1 and n2 be the sample size required for S1,n and
S2,n to have the same asymptotic power 1 - β, then

𝐻0: 𝜆 = 𝜆0 vs 𝐻1: 𝜆 > 𝜆0. 

sup
𝜆0≤𝜆≤𝜆0+𝛿,

sup
−∞<𝑡<∞

| 𝑃𝜆(
𝑆𝑛 − 𝜇𝑛(𝜆)

𝜎𝑛(𝜆)
) − 𝐹(𝑡)| → 0. 

𝜆 ∈ [𝜆0, 𝜆0 + 𝛿], 𝜇𝑛(⋅) 𝜇𝑛
(1)

(𝜆0) = ⋯ = 𝜇𝑛
(𝑘−1)

(𝜆0) = 0 < 𝜇𝑛
(𝑘)

(𝜆0) 

𝑐 > 0, 𝜎𝑛(𝜆0) ∼ 𝑐𝜇𝑛
(𝑘)

(𝜆0)/𝑑(𝑛). 

𝜆𝑛 = 𝜆0 + 𝑂(𝑑−1/𝑘(𝑛)), 𝜇𝑛
(𝑘)

(𝜆𝑛) ∼ 𝜇𝑛
(𝑘)

(𝜆0) and 𝜎𝑛(𝜆𝑛) ∼ 𝜎𝑛(𝜆0). 

𝑢𝛼𝑛) → 𝛼 (0 < 𝛼 < 1), that 
0 < 𝛽 < 1 − 𝛼, and that 𝜆𝑛 = 𝜆0 + 𝑂(𝑑−1/𝑘(𝑛)),     
(i) 𝛽𝑛(𝜆𝑛) = 𝑃𝜆𝑛

(𝑆𝑛 ≤ 𝑢𝛼𝑛) → 𝛽 

(𝜆𝑛 − 𝜆0)𝑘

𝑘!

𝑑(𝑛)

𝑐
→ 𝐹−1(1 − 𝛼) − 𝐹−1(𝛽). 

√ 
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Pitman ARE given by (3) or (4) are easy to use. However, they require the two comparing test statistics have the
same  asymptotic  distribution  (after  standardization),  (4)  require  further  that  they  are  jointly  asymptotic  normal.  In

Thus, if d(n) = nq (q > 0), then the Pitman ARE is given by; .

𝑑(𝑛1)

𝑑(𝑛2)
→

𝑐1

𝑐2
,    with   𝑐𝑖 = lim

𝑛→∞

𝑑(𝑛)𝜎𝑖,𝑛(𝜆0)

𝜇𝑖,𝑛
(𝑘)

(𝜆0)
   (𝑖 = 1,2). 

𝑒𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) = (𝑐2/𝑐1)1/𝑞. Typically, 𝑘 = 1, 𝑞

and Pitman ARE is then;

(8)

Let l (λ 0) be the Fisher information at λ 0. Under some additional conditions, Rao (1963) [25] proved that

Any test statistic Sn achieves the equality in the above is called Pitman efficient.

Under suitable conditions, Pitman ARE can be expressed in terms of correlation coefficient between the two test
statistics in their standardized form, as given below.

(P5)  are  asymptotic  joint  normal  uniformly  in  a
neighborhood of λ.

Denote  p(λ)the  asymptotic  correlation  coefficient  between  them under,  and  and  be  the  distribution  and  density
function of. The following result is true.

(van  Eden,  1963  [26]).  Assume  that  S1,n  and  S2,n  satisfy  (P1)-(P5)  in  their  standardized  form  with
, and that p(λn) → p(λ λn): = p as λn → λ 0 Then;

(i)  For  0  ≤  λ  ≤  1, tests of  the  form   satisfy  (P1)-(P5),   and   the   “best”  Syn  which
maximizes  is the one with;

and

(9)

(ii) If S1n is the best test satisfying (P1)-(P5), then;

(10)

In  the  typical  case,  Sn  is  an  i.i.d.  summation  (upto  scale),  then  µn(λ)  =  nµ(λ)

Note  does not (α, β) depend on , thus if  or, C1 > C2 then {S1n} is
better than {S2n} for all (α, β).

= 1/2, 𝜎𝑛(𝜆) = √𝑛𝜎(𝜆), 𝜇𝑛
(1)

= 𝑛𝜇(𝜆), then

𝑐 =
𝜎(𝜆0)

𝜇(1)(𝜆0)
, 

𝑒𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) = (
𝑐2

𝑐1
)2. 

(
𝜎(𝜆0)

𝜇(1)(𝜆0)
)2 ≥ 𝐼−1(𝜆0). 

(𝑆1,𝑛 − 𝜇1,𝑛(𝜆))/𝜎1,𝑛(𝜆) and (𝑆2,𝑛 − 𝜇2,𝑛(𝜆))/𝜎2,𝑛(𝜆) 

𝐻 = Φ, 𝑘 = 1 and 𝑑(𝑛) = 𝑛1/2 

𝑆𝛾,𝑛 = (1 − 𝛾)𝑆1,𝑛 + 𝛾𝑆2,𝑛 

𝑒𝑃({𝑆𝜆,𝑛}, {𝑆1,𝑛}) 

𝛾 =
𝑐1 − 𝜌𝑐2

(1 − 𝜌)(𝑐1 + 𝑐2)
=

𝑒𝑃
1/2

({𝑆2,𝑛}, {𝑆1,𝑛}) − 𝜌

(1 − 𝜌)[1 + 𝑒𝑃
1/2

({𝑆2,𝑛}, {𝑆1,𝑛})]
 

𝑒𝑃({𝑆𝛾,𝑛}, {𝑆1,𝑛}) = 1 +
[𝑒𝑃

1/2
({𝑆2,𝑛}, {𝑆1,𝑛})]2

1 − 𝜌2
. 

𝑒𝑃({𝑆2,𝑛}, {𝑆1,𝑛}) = 𝜌2. 

𝜎𝑛(𝜆) = √𝑛𝜎(𝜆), 𝑑(𝑛) = √𝑛, 𝑘 = 1, 𝑐 = 𝜎(𝜆0)/𝜇′(𝜆0) and 𝜆𝑛 = 𝜆0 + 𝑛−1/2𝜎(𝜆0)/𝜇′(𝜆0)[𝐹−1(1 − 𝛼)

− 𝐹−1(𝛽)]. 

𝑒𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) 𝑒𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) < 1 
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practice, these conditions some times cannot be satisfied. For example the chi-squared test Z (θ  0) and have different
asymptotic distributions. Below we give a generalized version of (3) to the case the two comparing test statistics not
necessarily have the same asymptotic distribution (after standardization). Similar generalizations may have already exist
in the literature, we still state our version to see what form it has in this case. Let Fi be the asymptotic distribution of

Assume (P1)-(P4) for Sin with µin, σin and Fi separately, but with the same K and nominal level α, n1 and n2 be the
sample sizes required for S1n and N2n to have the same asymptotic power 1 - β(0 < β < 1 - α), then

Thus for d(n) = nq (q > 0), we define the generalized Pitman ARE as;

Note, unlike the case of F1 = F2, in this case, Pitman’s ARE depends on the values of level α and power β , and
comparison of two tests may not have consistent result.

Can we have the corresponding form of (10) in the case S1n and S2n have different asymptotic distribution? For this
we checked the proof for (4), and find in this case, although in principle there is a relationship among the asymptotic
correlation coefficient p between S1n and S2n , the asymptotic distributions’s, Fi's, and the level α and power β , but its
mathematically intractable. Below we give its actual value.

Proposition 1.

 We have;(𝑆𝑖,𝑛 − 𝜇𝑖,𝑛(𝜆))/𝜎𝑖,𝑛(𝜆) 

(11)

In the typical case  or 1/q = 2, and;

Remark: When some of the conditions (P1)-(P5) are not satisfied, ARE may not be characterized by correlation
coefficient. For example, T1 = Z is an estimate of θ = 0 under H 0, and Z is symmetrically distributed around 0, so EHo

(Z) = 0 and suppose VARHo (Z) = 1 . Let,  is an estimate of  can also be used to test
H  0. However , but  we  cannot  say  that  T2 is a ‘bad’ test statistic,  
and .

Chernoff  ARE.  This  notion  only  considers  test  statistic  of  the  form   with  the  s  i.i.d.  with
 be the moment generating function of Y, and;

𝑑(𝑛1)

𝑑(𝑛2)
→

�̃�1

�̃�2
,    with   �̃�𝑖 = lim

𝑛→∞

𝑑(𝑛)𝜎𝑖,𝑛(𝜆0)[𝐹𝑖
−1(1 − 𝛼) − 𝐹𝑖

−1(𝛽)]

𝜇𝑖,𝑛
(𝑘)

(𝜆0)
   (𝑖 = 1,2). 

�̃�𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) = (
�̃�2

�̃�1
)1/𝑞 . 

𝜇𝑖,𝑛 = 𝑛𝜇𝑖, 𝜎𝑖,𝑛 = √𝑛𝜎𝑖, 𝑘 = 1 and 𝑑(𝑛) = √𝑛 

�̃�𝑃({𝑆1,𝑛}, {𝑆2,𝑛}) = (
�̃�2

�̃�1
)2,    �̃�𝑖 =

𝜎𝑖(𝜆0)[𝐹𝑖
−1(1 − 𝛼) − 𝐹𝑖

−1(𝛽)]

𝜇𝑖
(1)

(𝜆0)
   (𝑖 = 1,2). 

𝑒𝑃(𝑍𝑀𝐸𝑅𝑇 , 𝑍(𝜃(0))) =
(𝜌𝜃𝑖,𝜃(0) + 𝜌𝜃𝑗,𝜃(0))2

2(1 + 𝜌𝜃𝑖,𝜃𝑗
)

. 

𝑇2 = |𝑍| , 𝑇2 𝐸𝐻0
(|𝑍|) ≠ 0.  𝑇2

𝐶𝑜𝑣𝐻0
(|𝑍|, 𝑍) = 𝐸𝐻0

(|𝑍|𝑍) − 𝐸𝐻0
(|𝑍|)𝐸𝐻0

(𝑍) = 0 

𝑒𝑃(𝑇1, 𝑇2) ≠ 𝐶𝑜𝑣𝐻0

2 /[𝑉𝑎𝑟𝐻0
(𝑇1)𝑉𝑎𝑟𝐻0

(𝑇2)] 

𝑆𝑛 = ∑ 𝑌𝑖

𝑛

𝑖=1
 

𝑚(𝑡) = inf
𝑧

𝐸 (𝑒𝑧(𝑌−𝑡)) = inf
𝑧

𝑒−𝑧𝑡 𝑀(𝑧). 

𝑌 ∼ 𝐹. Let 𝑀(𝑧) = 𝐸𝐹(𝑒
𝑧𝑌) 

Let  and  (assume µ 0  ≤  µ1),  (i =
0,1)  

 be  a  linear combination of type I and type II errors evaluated at the critical
 value t, and Qn = infµ0 ≤ t ≤ µ,Qn (t) be the minimum of

 called the Chernoff index of

these errors for test statistic Sn. Chernoff (1952) [27] showed that 
Qn tends to 0 at  exponential rate, (so the faster the rate, or the larger absolute value of logQn, the better the test statistic),  
and established.

𝜇0 = 𝐸(𝑌|𝐻0) 𝜇1 = 𝐸(𝑌|𝐻1 ) 𝑚𝑖(𝑡) = inf
𝑧

𝐸 (𝑒𝑧(𝑌−𝑡)|𝐻𝑖) = inf
𝑧

[ 𝑒−𝑧𝑡𝑀𝑖(𝑧)], 

, 𝜌(𝑡) = max { 𝑚0(𝑡), 𝑚1(𝑡)} and 𝜌 = inf
𝜇0≤𝑡≤𝜇1

𝜌 (𝑡) {𝑆𝑛}. For 0 ≤ 𝛾 < ∞, let 𝑄𝑛

(𝑡) = 𝑃(𝑆𝑛 ≤ 𝑛𝑡|𝐻1) + 𝛾𝑃(𝑆𝑛 > 𝑛𝑡|𝐻0) 
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the result is independent of γ.

Let {S1,n} and {S2,n} both of the form of i.i.d. summation and have Chernoff indices p1 and p2 respectively, n1 and n2

be the corresponding sample sizes for which Q1,n, ~ Q2,n, the Chernoff ARE of {S1,n} relative to {S2,n} is defined and
given by;

lim
𝑛

𝑛−1 log 𝑄𝑛 = log 𝜌, 

(12)

For test statistic not in the form of i.i.d summation, its Chernoff index is difficult to compute. The following result
sometimes is very helpful in this case, and give an upper bound of Chernoff index.

(Kallenberg, 1982 [28]) Let for some

Then 

In the case of simple null vs simple alternative, Kallenberg (1982) [28] also gives an upper bound of the Chernoff
index,  and any test  statistic  achieves  this  bound is  said  to  be  Chernoff  efficient.  As  this  bound itself  is  not  easy to
compute, we won’t pursue it here, interested readers can check the mentioned paper or the book by Nikitin (1995) [10].

As another way to simplify the computation, we consider a modified version of this Chernoff index. Let S be the
weak limit of Sn,  be the distribution function of S,  and Hn:  λn  + λn  = n-1/2be a sequence of local alternatives.  As the
sample size increases, the test statistic Sn is expected to be able to distinguish the local alternatives from the null. Let

 (assume  µ1  ≥µ  0),  and   be  the  asymptotic
linear combination of type I and local type II errors evaluated at t, and . The smaller is , the better Sn

as a test statistic for H 0vs.H1 For  two  test   statistics S1n and S2n with  we define the modified Chernoff ARE
as;

(13)

Below we give values pz(θ(0)) and pZMERT
 and so that their Chernoff ARE can be obtained. We also give and, so their

modified Chernoff ARE can be obtained. For the chi-squared test T, under T1 its asymptotic distribution is a non-central
chi-squared  distribution,  with  a  non-closed  form,  its  modified  Chernoff  index  is  not  directly  computable.  Let

,  where  g1  is  the  observed  genotype  of  the  i-th  individual,  x1  is  the
corresponding covariates, and let;

Proposition  2.  (i)  Assume   is  normal  with  mean   and  variance

. Then, for E to denote expectation with respect to (xi, gi), we have;

𝑒𝐶({𝑆1,𝑛}, {𝑆2,𝑛}) = lim 
𝑛2

𝑛1
=

𝑙𝑜𝑔 𝜌1

𝑙𝑜𝑔 𝜌2
. 

𝑡 ∈ 𝑅1, and 𝜆 ∈ Λ1 

lim
𝑛→∞

log sup { 𝑃𝜆0
(𝑆𝑛 > 𝑛𝑡): 𝜆0 ∈ Λ0} = lim

𝑛→∞
inf log 𝑃𝜆 (𝑆𝑛 ≤ 𝑛𝑡): = 𝑢(𝜆) 

 𝜌(𝜆) = −𝑢(𝜆).  

𝜇0 = 𝐸(𝑆|𝐻0), 𝜇1 = lim
𝑛

𝐸 (𝑆|𝐻𝑛) �̃�(𝑡) = lim
𝑛

𝐺 (𝑆 ≤ 𝑡|𝐻𝑛) + 𝐺(𝑆 > 𝑡|𝐻0) 

�̃� = inf
𝜇0≤𝑡≤𝜇1

�̃� (𝑡) �̃� 

�̃�1 and �̃�2, 

�̃�𝐶({𝑆1,𝑛}, {𝑆2,𝑛}) =
�̃�2

�̃�1
.   

Let 𝜇(1)(𝜆, 𝜃) = 𝜕𝜇(𝜆, 𝜃)/𝜕𝜆, and  

𝜁(1) = (𝜁1
(1)

, . . . , 𝜁𝑘
(1)

)𝑇 = (
𝜇(1)(𝜆0, 𝑎1)

𝜎(𝑎1)
, . . . ,

𝜇(1)(𝜆0, 𝑎𝑘)

𝜎(𝑎𝑘)
)𝑇 . 

𝑏(𝑔𝑖) = log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑖) + log ( 𝜆)𝐼2(𝑔𝑖) 

𝑎(𝒙𝑖 , 𝑔𝑖 , 𝜆) =
𝐼1(𝑔𝑖)

(1 − 𝜃 + 𝜃𝜆)𝜎2
+

𝐼2(𝑔𝑖)

𝜆𝜎2
+

(𝐿13
𝑇 (𝜂0) + 𝜃𝐿23

𝑇 (𝜂0))𝐿33
−1(𝜂0)𝒙𝑖

𝜎2
. 

Let 𝑏1(𝑔𝑟) = [log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑟) + log ( 𝜆)𝐼2(𝑔𝑟)]/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
), and 𝑎1(𝒙𝑟 , 𝑔𝑟) =

[𝑎(𝒙𝑟 , 𝑔𝑟 , 𝜃𝑖 , 𝜆) + 𝑎(𝒙𝑟 , 𝑔𝑟 , 𝜃𝑗 , 𝜆)]/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
).   

𝑌|(𝒙, 𝑔) 𝜂𝑇𝒙 + ∑ log (
2

𝑗=1
𝜆𝑗)𝐼𝑗(𝑔) 

𝜎2, 𝜆1 = 𝜆, and 𝜆2 = 1 − 𝜃 + 𝜃𝜆  
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Hodges-Lehmann ARE. Consider  testing the  null  hypothesis  be  given  a  level  α
test statistic Sn  with  critical  value  the   type   II   error   at   λ
is  Typically,  tends  to  zero  at   exponential  rate,  the   faster  the  better  Sn  is.  Hodges
 and Lehmann (1956) [29] proposed;

as  a  measure  of  the  performance of  Sn  and it  called the  Hodges-Lehmann index of  the  statistic  Sn.  For  two test
statistics S1n and S2n for the same H 0vs,H1 with d1 (λ) and d2 (λ), the Hodges-Lehmann ARE of {S1n} relative to {S2n} at

 is defined as;

(14)

For probability density functions f and g, let  be the Kullback-Leibler divergence
between   f)   and   g).   For   any   test   statistic   Sn  (X1,.....,Xn)  based   on  (X1,.....,Xn)  i.i.d.   density  ,  the  Hodges-
Lehmann index has the following property;

and any test statistic achieve the equality in the above is said to be  Hodges-Lehmann efficient.

Compared  to  the  Pitman  and  Chernoff  ARE,  the  Hodges-Lehmman  ARE  does  not  require  the  comparing  test
statistic have the same asymptotic distribution, nor they have the form of i.i.d. summations, so it has wilder application
scope.

Proposition  3.  Under  conditions  of  Theorem  4  in  Zheng  et  al.  (2010)  [30],  with

, given in (2), for λ > 1, we have;

For the chi-squared test T, under H1 its asymptotic distribution is a non-central chi-squared distribution, with no-
closed form. So its Hodges-Lehmann ARE is not directly available.

Bahadur ARE. Consider testing the null hypothesis be  Let Fn,λ(.) be the distribution
function of a test statistic Sn under pλ, and for , let;

the p-value of the observed Sn under the distribution pλ, and;

𝜌𝑍(𝜃) = 𝐸(exp [ −
𝑏2(𝑔𝑖)

2(𝑎(𝒙𝑖 , 𝑔𝑖 , 1) + 𝑎(𝒙𝑖 , 𝑔𝑖 , 𝜆))2
]), 

 

𝜌𝑍𝑀𝐸𝑅𝑇
= 𝐸(exp [ −

𝑏1
2(𝑔𝑖)

2(𝑎1(𝒙𝑖 , 𝑔𝑖 , 1) + 𝑎1(𝒙𝑖 , 𝑔𝑖 , 𝜆))2
]). 

(ii)  

�̃�𝑍(𝜃(0)) = 2(1 − Φ(
𝜇(1)(𝜆0, 𝜃(0))

2𝜎(𝜃(0))
)), 

 

�̃�𝑍𝑀𝐸𝑅𝑇
= 2(1 − Φ([

𝜇(1)(𝜆0, 𝜃𝑖)

𝜎(𝜃𝑖)
+

𝜇(1)(𝜆0, 𝜃𝑗)

𝜎(𝜃𝑗)
]/√8(1 + 𝜌𝜃𝑖,𝜃𝑗

))). 

𝐻0: 𝜆 ∈ Λ0 vs 𝐻1: 𝜆 ∈ Λ1, 
𝑡𝑛(𝛼): 𝛼𝑛: = sup

𝜆∈Λ0
𝑃𝜆 (𝑆𝑛 ≥ 𝑡𝑛(𝛼)) → 𝛼. For 𝜆 ∈ Λ1, 

𝛽𝑛(𝜆) = 𝑃𝜆(𝑆𝑛 ≤ 𝑡𝑛(𝛼)). 𝛽𝑛(𝜆) 

𝑑(𝜆) = lim
𝑛

− 2𝑛−1 log 𝛽𝑛 (𝜆) 

𝑒𝐻𝐿({𝑆1,𝑛}, {𝑆2,𝑛}) =
𝑑1(𝜆)

𝑑2(𝜆)
. 

𝐾(𝑓, 𝑔) = ∫ 𝑓 (𝑥) log [ 𝑓(𝑥)/𝑔(𝑥)]𝑑𝑥 

𝑓(⋅ |𝜆) 

lim
𝑛

( 1 − 𝛽𝑛(𝜆)) ≥ − inf { 𝐾(𝑓(⋅ |𝜆0), 𝑓(⋅ |𝜆)): 𝜆0 ∈ Λ0}, 

𝜇𝑀𝐸𝑅𝑇(𝜆): = [𝜇(𝜆, 𝜃𝑖)/𝜎(𝜃𝑖) + 𝜇(𝜆, 𝜃𝑗)/𝜎(𝜃𝑗)]/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
), and 𝜁 

𝑑𝑍(𝜃)(𝜆) =
𝜇2(𝜆, 𝜃)

𝜎2(𝜃)
,        𝑑𝑍𝑀𝐸𝑅𝑇

(𝜆) = 𝜇𝑀𝐸𝑅𝑇
2 (𝜆). 

𝜆 ∈ Λ1

𝐻0: 𝜆 ∈ Λ0 vs 𝐻1: 𝜆 ∈ Λ1. 

𝐿𝑛(𝜆) = sup
𝜉∈Λ0

[ 1 − 𝐹𝑛,𝜉(𝑆𝑛|𝜆)], 
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(ii) Under conditions of Theorem 4 in ZLY, µMERT (λ) with be the derivative of µMERT (λ), θ  0 be the value of θ H  0

if the limit exists. Typically, Ln tends to one and Ln tends to zero exponentially fast, and the faster, or the bigger c(.),
the better Sn is. For two test statistics Si,n (l = 1,2) for the same hypothesis with Ln, Ci (λ), and sample size ni, to perform
“equivalently” in the sense   , the Bahadur ARE of S1,n log L1n, the Bahadur ARE

 of relative to S2,n, at , is defined as, and has the property

(15)

The limit C can be computed under the following conditions.

(B1). 

(B2). For the interval , there is a function g on l, such that;

(Bahadur, 1960 [13]). If Sn satisfies (B1)-(B2), then for ,

For  any  test  statistic  Sn  (X1,....,X2)  based  on  X1,....,Xn  i.i.d.  density  , Bahadur  (1967) [16] obtained the
following;

Note although the above relationship is regarded as a dual to that of the Hodges-Lehmann index, the two are not
equivalent as  A   test  statistic  is  said   to be Bahadur efficient  if for each

limn, log 

Bahadur efficiency of likelihood ratio test has been studied by a number of researchers for some special distribution
families. Arcones (2005 [17], Theorem 3.3) proved that, under some regularity conditions, the likelihood ratio statistic
is Bahadur efficient. Let be the density function of the data, under his conditions of Theorem 3.3, for
each fixed λ > 1 and θ, we have;

Like  the  Hodges-Lehmman  ARE,  Bahadur  ARE  does  not  require  the  comparing  test  statistic  have  the  same
asymptotic distribution, nor they have the form of i.i.d. summations, so it has wide application scope.

For computation easiness, we consider a local version of Bahadur ARE. Consider testing H  0: λ = λ  0 vs the local
alternative H 0: λ = λ 0 + n-1/2. Let F 0 be the asymptotic distribution function of Sn under H 0, we define;

Typically, 0 < <1. The smaller , the better Sn is. For two test statistics Si,n(i = 1,2) for the same hypothesis with
Gi,n and , we define the local Bahadur ARE of S1,n relative to S2,nas;

(16)

Proposition 4. (i) with µMERT (λ) given in Proposition 3, we have;

𝜆 ∈ Λ1 

𝜆 ∈ Λ1 

𝑐(𝜆) = lim
𝑛→∞

( − 2𝑛−1 log 𝐿𝑛 (𝜆)) 

𝑒𝐵({𝑆1,𝑛}, {𝑆2,𝑛}) = lim 
𝑛2

𝑛1
=

𝑐1(𝜆)

𝑐2(𝜆)
. 

For 𝜆 ∈ Λ1, 𝑛−1/2𝑆𝑛 → 𝑏(𝜆) a.s. (𝑃𝜆), for some −∞ < 𝑏(𝜆) < ∞. 

𝐼 = {𝑏(𝜆): 𝜆 ∈ Λ1} 

lim 𝑛1
−1 log 𝐿2,𝑛2

= lim 𝑛1
−1 log 𝐿1,𝑛1

 

lim
𝑛

− 2𝑛−1 log sup
𝜉∈Λ0

[ 1 − 𝐹𝑛,𝜉(𝑛1/2𝑡)] = 𝑔(𝑡),    𝑡 ∈ 𝐼. 

𝜆 ∈ Λ1

𝑐(𝜆) = 𝑔(𝑏(𝜆))   𝑎. 𝑠. (𝑃𝜆). 

𝑓(⋅ |𝜆) 

lim
𝑛

𝑛−1 log 𝐿𝑛 (𝜆) ≥ − inf { 𝐾(𝑓(⋅ |𝜆), 𝑓(⋅ |𝜆0)): 𝜆0 ∈ Λ0}. 

𝐾(𝑓(⋅ |𝜆), 𝑓(⋅ |𝜆0)) ≠ 𝐾(𝑓(⋅ |𝜆0), 𝑓(⋅ |𝜆)).  
 𝐿𝑛 (𝜆) = − inf { 𝐾(𝑓(⋅ |𝜆), 𝑓(⋅ |𝜆0)): 𝜆0 ∈ Λ0}. 

𝑓(⋅ |𝜆, 𝜃, 𝜂) 

𝑐𝑇 = −2 inf inf { 𝐾(𝑓(⋅ |𝜆, 𝜃, 𝜂), 𝑓(⋅ |𝜂, 𝜆0)): 𝜂}. 

�̃� = lim
𝑛

[ 1 − 𝐹0(𝑆𝑛|𝐻𝑛)]. 

�̃� 

�̃�𝑖 

�̃�𝐵({𝑆1,𝑛}, {𝑆2,𝑛}) =
�̃�2

�̃�1
. 

𝑐𝑍(𝜃)(𝜆) = 𝜇2(𝜆, 𝜃)/𝜎2(𝜃),        𝑐𝑍𝑀𝐸𝑅𝑇
(𝜆) = 𝜇𝑀𝐸𝑅𝑇

2 (𝜆). 



36   The Open Statistics & Probability Journal, 2018, Volume 9 Yuan et al.

under, we have;

4. SIMULATION AND APPLICATION TO GENETIC ASSOCIATION STUDIES

4.1. Simulation Study

Let P be the Minor Allele Frequency (MAF) of a marker of interest. We consider case-control data with r = 500
cases and s = 500 controls,  and the disease prevalence K
=  0.05.  We  generate  1000  datasets,  and  compute  the  means  and  standard  deviations  of

 For ZMERT, we choose θi = 0 and θj = 1.

Table T1 shows the result, the means of AREs and the standard deviations of AREs are in brackets. First we can see
the mean of all three AREs are less than 1, which show that Zθo is consistent better than ZMERT. Corresponding tothis fact
when θ = θ(o) is the true value Zθ(o), is asymptotically most powerful. Then the three AREs are increased with the P or λ
increased. Third, the ep has the lowest variance among the three AREs, next is 

Table 1. The AREs of ZMERT and Z θ(0).

- - λ - 1.1 λ - 1.1 λ - 1.1

MAFθ θ (0) ep ep ep

0.15 1/2 0.874 0.876 0.827 0.887 0.904 0.856 0.895 0.917 0.869
- - (0.056) (0.1) (0.115) (0.048) (0.084) (0.11) (0.039) (0.069) (0.097)
- 1 0.654 0.814 0.723 0.654 0.837 0.746 0.652 0.85 0.761
- - (0.037) (0.094) (0.101) (0.031) (0.084) (0.094) (0.029) (0.075) (0.092)

0.3 1/2 0.963 0.94 0.912 0.97 0.954 0.929 0.973 0.961 0.937
- - (0.018) (0.05) (0.069) (0.013) (0.042) (0.064) (0.011) (0.039) (0.061)
- 1 0.73 0.841 0.751 0.729 0.853 0.763 0.728 0.863 0.775
- - (0.03) (0.045) (0.056) (0.028) (0.043) (0.055) (0.025) (0.037) (0.05)

0.45 1/2 0.991 0.985 0.978 0.993 0.986 0.978 0.995 0.989 0.983
- - (0.006) (0.038) (0.055) (0.004) (0.036) (0.054) (0.003) (0.032) (0.051)
- 1 0.76 0.85 0.766 0.758 0.856 0.771 0.76 0.861 0.775
- - (0.032) (0.033) (0.044) (0.031) (0.031) (0.042) (0.027) (0.028) (0.039)

4.2. Application

We use 6 reported SNPs associated with breast cancer 2 (Hunter et al. 2007 [31]; Li et al., 2008 [32]) to illustrate
the ARE of ZMERT. These 6 SNPs are rs10510126, rs12505080, rs17157903, rs1219648, rs7696175, and rs2420946. The
counts of  subjects  with three types of  genotypes in cases and controls  are shown in Table 2,  where (r,  r1,  r2)  is  the
number of three genotypes in cases and (s, s1, s2) is the number of genotypes in controls. From the table, we find three
AREs of Ep, Ec and Eb are higher than 75%, sometimes it can reach 97%. For example, for SNP rs17157903, the AREs
of, and are 0.8255, 0.8453 and 0.7642, respectively. It shows that ZMERT is a robust test.

Table 2. Three AREs of for 6 reported SNPs associated with breast cancer 2.

SNPid r r1 r2 r r1 r2 Ep Ec b
rs10510126 955 180 10 854 272 14 0.8085 0.84 0.7594
rs12505080 608 477 50 628 408 99 0.8976 0.8725 0.8202
rs17157903 777 316 18 862 220 26 0.8255 0.8453 0.7642
rs1219648 352 543 250 433 538 170 0.9805 0.9719 0.9585
rs7696175 353 605 187 396 496 249 0.9686 0.9476 0.9285
rs2420946 357 546 242 440 537 165 0.9792 0.9673 0.9512

APPENDIX

Derivation of : From (P3), we have . Also, as in the proof in Serfling (1980 [8], p.
317-318),  if and only if

�̃�𝑍(𝜃) = 1 − Φ(𝜇(1)(1, 𝜃0)/𝜎(𝜃0)),    �̃�𝑍𝑀𝐸𝑅𝑇
= 1 − Φ(𝜇𝑀𝐸𝑅𝑇

(1)
(1)). 

∈ {1.1,1.3,1.5} , 𝑝 ∈ {0.15,0.30,0.45}, the true 𝜃(0) ∈ {1/2,1}, 𝜆

𝑒𝑃(𝑍MERT, 𝑍𝜃(0)), �̃�𝐶(𝑍MERT, 𝑍𝜃(0)) and �̃�𝐵(𝑍MERT, 𝑍𝜃(0)). 

�͡�𝑙𝑑𝑒𝑒𝐶 , las t is �̃�𝐵. 

�̃�𝐶  �̃�𝐶  �̃�𝐶  �̃�𝐵 �̃�𝐵 �̃�𝐵 

�̃�𝒊 𝑐𝑖 = lim
𝑛

𝑑 (𝑛)𝜎𝑖,𝑛(𝜆0)/𝜇𝑖,𝑛(𝜆0) 

𝑃𝜆0
(𝑆𝑖,𝑛 > 𝑢𝛼,𝑖,𝑛) → 𝛼 and 𝛽𝑖,𝑛(𝜆𝑛): = 𝑃𝜆𝑛

(𝑆𝑖,𝑛 ≤ 𝑢𝛼,𝑖,𝑛) → 𝛽 
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Thus, for βi,n (θ n) → β, we must have;

Proof  of  Proposition  1:  We  use  (4)  to  compute  ep  (ZMERT,Z(θ(0))).  By  definition  of  Z(θ(0)))  and  CLT  we  have
, and by Theorem 3 in ZLY,  Also Z(θ(0))), and ZMERT)are jointly asymptotic normal with

correlation . Thus the condition of (4) are satisfied, and it gives;

Proof of Proposition 2. (i) By assumption 

As in the proof of Theorem 4 in ZLY, we have that  where the Vi = Vi (θ) ’s are i.i.d. with;

(𝜆𝑛 − 𝜆0)𝑘

𝑘!

𝑑(𝑛)

𝑐𝑖
→ 𝐹𝑖

−1(1 − 𝛼) − 𝐹𝑖
−1(𝛽)   or   

(𝜆𝑛 − 𝜆0)𝑘

𝑘!

𝑑(𝑛)

�̃�𝑖
→ 1. 

(𝜆𝑛 − 𝜆0)𝑘

𝑘!

𝑑(𝑛1)

�̃�1
∼

(𝜆𝑛 − 𝜆0)𝑘

𝑘!

𝑑(𝑛2)

�̃�2
,    or   

𝑑(𝑛1)

𝑑(𝑛2)
→

�̃�1

�̃�2
. 

𝑍(𝜃(0))
𝐷
→ 𝑁(0,1) 𝑍𝑀𝐸𝑅𝑇

𝐷
→ 𝑁(0,1)Φ 

(𝜌𝜃𝑖,𝜃(0) + 𝜌𝜃𝑗,𝜃(0))/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
) 

𝑒𝑃(𝑍𝑀𝐸𝑅𝑇 , 𝑍(𝜃(0))) =
(𝜌𝜃𝑖,𝜃(0) + 𝜌𝜃𝑗,𝜃(0))2

2(1 + 𝜌𝜃𝑖,𝜃𝑗
)

. 

𝑌|(𝒙, 𝑔) ∼ 𝑁(𝜂𝑇𝒙 + ∑ log (2
𝑗=1 𝜆𝑗)𝐼𝑗(𝑔), 𝜎2), where 𝜆1 = 𝜆, 𝜆2 = 1 − 𝜃 + 𝜃𝜆. 

√𝑛𝑍(𝜃) = ∑ 𝑉𝑖

𝑛

𝑖=1
+ 𝑜𝑃(1) 

By example A in Serfling (1980 [8], p. 330), we have;

𝑉𝑖 = 𝜎−1(𝑙1,1(𝑌𝑖 , 𝒙𝑖 , 𝑔𝑖|1,1, 𝜂0) + 𝜃𝑙1,2(𝑌𝑖 , 𝒙𝑖 , 𝑔𝑖|1,1, 𝜂0) 

−(𝐿13
𝑇 (𝜂0) + 𝜃𝐿23

𝑇 (𝜂0))𝐿33
−1(𝜂0)𝑙1,3(𝑌𝑖 , 𝒙𝑖 , 𝑔𝑖|1,1, 𝜂0)) 

= (
𝐼1(𝑔𝑖)

(1 − 𝜃 + 𝜃𝜆)𝜎2
+

𝐼2(𝑔𝑖)

𝜆𝜎2
+

(𝐿13
𝑇 (𝜂0) + 𝜃𝐿23

𝑇 (𝜂0))𝐿33
−1(𝜂0)𝒙𝑖

𝜎2
) 

× (𝑌𝑖 − 𝜂𝑇𝒙𝑖 − log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑖) + log ( 𝜆)𝐼2(𝑔𝑖))/𝜎 

: = 𝑎(𝒙𝑖 , 𝑔𝑖 , 𝜆)(𝑌𝑖 − 𝜂𝑇𝒙𝑖 − log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑖) + log ( 𝜆)𝐼2(𝑔𝑖))/𝜎. 

Under 𝐻0: 𝜆 = 1, 𝑉𝑖|(𝒙𝑖 , 𝑔𝑖) ∼ 𝑁(𝑏0(𝑔𝑖), 𝑎0
2(𝒙𝑖 , 𝐺𝑖), with 𝑏0(𝑔𝑖) = 0 and 𝑎0(𝒙𝑖 , 𝑔𝑖) = 𝑎(𝒙𝑖 , 𝑔𝑖 , 1). Under 

𝐻1: 𝜆 ≠ 1, 𝑉𝑖|(𝒙𝑖 , 𝑔𝑖) ∼ 𝑁(𝑏1(𝑔𝑖), 𝑎1
2(𝒙𝑖 , 𝑔𝑖 , 𝜆)), with 𝑏1(𝑔𝑖) = 𝑏(𝑔𝑖) = log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑖) +

log ( 𝜆)𝐼2(𝑔𝑖) and 𝑎1(𝒙𝑖 , 𝑔𝑖) = 𝑎(𝒙𝑖 , 𝑔𝑖 , 𝜆). So we have  

𝜇0 = 𝐸(𝑉𝑖|𝐻0) = 𝐸[𝐸(𝑉𝑖|(𝒙𝑖 , 𝑔𝑖 , 𝐻0)] = 0,      and 

𝜇1 = 𝐸(𝑉𝑖|𝐻1) = 𝐸[𝐸(𝑉𝑖|(𝒙𝑖 , 𝑔𝑖 , 𝐻1)] = 𝐸[log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑖) + log ( 𝜆)𝐼2(𝑔𝑖)]. 

𝑒−𝑡𝑠𝑀𝑘(𝑠) = 𝐸[𝑒−𝑡𝑠𝐸(𝑒𝑠𝑉𝑖|𝒙𝑖 , 𝑔𝑖 , 𝐻𝑘)] = 𝐸[exp ( (𝑏𝑘(𝑔𝑖) − 𝑡)𝑠 +
1

2
𝑎𝑘

2(𝒙𝑖 , 𝑔𝑖)𝑠2)],    (𝑘 = 0,1) 

 

𝑚𝑘(𝑡) = inf
𝑠

[ 𝑒−𝑡𝑠𝑀𝑘(𝑠)] = 𝐸[exp ( −
(𝑏𝑘(𝑔𝑖) − 𝑡)2

2𝑎𝑘
2(𝒙𝑖 , 𝑔𝑖)

],    (𝑘 = 0,1), 

and  

𝜌𝑍(𝜃) = 𝐸(exp [ −
𝑏1

2(𝑔𝑖)

2(𝑎0(𝒙𝑖 , 𝑔𝑖) + 𝑎1(𝒙𝑖 , 𝑔𝑖))2
]) = 𝐸(exp [ −

𝑏2(𝑔𝑖)

2(𝑎(𝒙𝑖 , 𝑔𝑖 , 1) + 𝑎(𝒙𝑖 , 𝑔𝑖 , 𝜆))2
]). 
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similar to that for (Z(θ(0))).

(ii). We  first  compute . In   this   case,   let   be   the   weak   limit   of   ( Z(θ (0))).   Then,

Proof  of  Proposition  3.  Since  under  ,  we  have  tn(α)→  Ф-1  (1-  α);  and  under
 is  continuous  on  (-  ∞,  ∞),  the  distribution  function  of

 converges to uniformly Ф (.). Note µ(λ, θ) > 0, so for λ > 1 we have;

Let  , using L’hopital’s rule twice, we get;

 

Similarly, √𝑛𝑍𝑀𝐸𝑅𝑇 = ∑ (𝑛
𝑘=1 𝑉𝑘(𝜃𝑖) + 𝑉𝑘(𝜃𝑗))/√2(1 + 𝜌𝜃𝑖,𝜃𝑗

) + 𝑜𝑃(1): = ∑ 𝑉𝑘
𝑛
𝑘=1 + 𝑜𝑃(1). 

We have, under 𝐻0, 𝑉𝑘|(𝒙𝑘, 𝑔𝑘) ∼ 𝑁(𝑏0(𝑔𝑘), 𝑎0
2(𝒙𝑘 , 𝑔𝑘)), with 𝑏0(𝑔𝑘) = 0 and 𝑎0(𝒙𝑘, 𝑔𝑘) =

[𝑎(𝒙𝑘 , 𝑔𝑘 , 𝜃𝑖 , 1) + 𝑎(𝒙𝑘 , 𝑔𝑘 , 𝜃𝑗 , 1)]/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
); Under 𝐻1, 𝑉𝑘|(𝒙𝑘 , 𝑔𝑘) ∼

𝑁(𝑏1(𝑔𝑘), 𝑎1
2(𝒙𝑘 , 𝑔𝑘)), where 𝑏1(𝑔𝑘) = 𝑏(𝑔𝑘) = 𝐸(𝑉𝑘|𝐻1) = [log ( 1 − 𝜃 + 𝜃𝜆)𝐼1(𝑔𝑘) +

log ( 𝜆)𝐼2(𝑔𝑘)]/√2(1 + 𝜌𝜃𝑖,𝜃𝑗
), and 𝑎1(𝒙𝑘 , 𝑔𝑘) = [𝑎(𝒙𝑘, 𝑔𝑘 , 𝜃𝑖 , 𝜆) + 𝑎(𝒙𝑘, 𝑔𝑘 , 𝜃𝑗 , 𝜆)]/

√2(1 + 𝜌𝜃𝑖,𝜃𝑗
)

�̃�𝑍(𝜃(0)) 𝑆|𝐻0 ∼

𝑁(0,1), and 𝑆|𝐻𝑛 ∼ 𝑁(√𝑛𝜇(𝜆𝑛, 𝜃(0))/𝜎(𝜃(0),1). So 𝜇0 = 𝐸(𝑆|𝐻0) = 0. Note 𝜇(𝜆𝑛, 𝜃(0)) =
𝜇(𝜆0, 𝜃) + 𝜇(1)(𝜆0, 𝜃(0))𝑛−1/2 + 𝑂(𝑛−1), we have 𝜇1 = lim

𝑛
𝐸 (𝑆|𝐻𝑛) = 𝜇(1)(𝜆0, 𝜃(0))/𝜎(𝜃(0)). 

Thus  

�̃�𝑍(𝜃(0)) = inf
0≤𝑡≤𝜇1

�̃�𝑍(𝜃(0)) (𝑡) = inf
0≤𝑡≤𝜇1

( 1 − Φ(𝑡) + Φ(𝑡 − 𝜇1)). 

 

  ,      √                   . Since      

     √             

  ,     
 
→       

                                                         

 

                    √ 
      

    
   

  √ 
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Similarly,  under   where

 . The same way we get;

Proof  of  Proposition  4.  i).  In  our  case   and  when
 uniformly  in  Sn.  From  proof  of

Theorem 4 in ZLY, we have  that  for   (a.s.). Now  we  compute, , for

Let , and use L’Hopital’s rule,

Since ,  and by L’hopital’s  rule,  , so  use 
 L’Hopital’s rule on the above again,

Thus by Bahadur’s (1960) [13] Theorem,

is similarly computed

Similarly, under , (a.s.), so

, , and under , 

 

, , 
, , so 

𝜆 ∈ Λ1, 𝑛−1/2𝑍(𝜃) → 𝜇(𝜆, 𝜃)/𝜎(𝜃) 𝑡 ∈ (1, ∞) 

𝑔(𝑡): = lim
𝑛

− 2𝑛−1𝐿𝑛 = lim
𝑛

− 2𝑛−1(1 + 𝑜(1)) log ( 1 − Φ(𝑛1/2𝑡)). 

𝑥 = √𝑛 

𝑔(𝑡) = lim
𝑥→∞

−2(1 + 𝑜(1)) 𝑙𝑜𝑔 ( 1 − 𝛷(𝑥𝑡))

𝑥2
= lim

𝑥→∞

−2 𝑙𝑜𝑔 ( 1 − 𝛷(𝑥𝑡))

𝑥2
= lim

𝑥→∞

𝑡𝜙(𝑥𝑡)

𝑥(1 − 𝛷(𝑥𝑡))
. 

𝜙(𝑥𝑡) → 0 𝑥(1 − Φ(𝑥𝑡)) = (1 − Φ(𝑥𝑡))/(1/𝑥) = 𝑡𝑥2𝜙(𝑥𝑡) → 0 

𝑔(𝑡) = lim
𝑥→∞

−𝑡3𝑥𝜙(𝑥𝑡)

1 − 𝛷(𝑥𝑡) − 𝑥𝑡𝜙(𝑥𝑡)
= 𝑡2. 

𝑐𝑍(𝜃)(𝜆) = 𝜇2(𝜆, 𝜃)/𝜎2(𝜃). 

Since  𝑍𝑀𝐸𝑅𝑇 = (𝑍 (𝜃 𝑖) + 𝑍(𝜃𝑗))/ √ 2(1 + 𝜌𝜃𝑖,𝜃𝑗
), for 𝜆 ∈ Λ0, 𝑍𝑀𝐸𝑅𝑇

𝐷
→ 𝑁(0,1); for 𝜆 ∈ Λ1, 𝑛−1/2𝑍𝑀𝐸𝑅𝑇 → 𝜇𝑀𝐸𝑅𝑇(𝜆) (a.s.), so 

𝑐𝑍𝑀𝐸𝑅𝑇
(𝜆)   .   

(ii. Note 𝜇(1, 𝜃0) = 0, under 𝐻0, 𝑍(𝜃)
𝐷
→ 𝑁(0,1); under 𝐻𝑛, 𝑍(𝜃) ∼ √𝑛𝜇(𝜆𝑛, 𝜃0)/𝜎(𝜃0) ∼ 𝜇(1)(1, 𝜃0)/

𝜎(𝜃0) (a.s.), so  

𝑒𝑍(𝜃) = lim
𝑛

( 1 − Φ(𝑍(𝜃)|𝐻𝑛)) = 1 − Φ(𝜇(1)(1, 𝜃0)/𝜎(𝜃0)). 

𝐻0, 𝑍𝑀𝐸𝑅𝑇

𝐷
→ 𝑁(0,1); under 𝐻𝑛, 𝑍𝑀𝐸𝑅𝑇 ∼ 𝜇𝑀𝐸𝑅𝑇(𝜆𝑛) ∼ 𝜇𝑀𝐸𝑅𝑇

(1)
(1)

�̃�𝑍𝑀𝐸𝑅𝑇
= lim

𝑛
( 1 − Φ(𝑍𝑀𝐸𝑅𝑇|𝐻𝑛)) = 1 − Φ(𝜇𝑀𝐸𝑅𝑇

(1)
(1)). 
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