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Abstract: This paper constructs a new family of distributions, which is based on the Hurwitz zeta function, which includes novel
distributions as well important known distributions such as the normal, gamma, Weibull, Maxwell-Boltzmann and the exponential
power distributions. We provide the n-th moment, the Esscher transform and premium and the tail conditional moments for this
family.
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1. INTRODUCTION

The Hurwitz Zeta function, which was introduced by Hurwitz (1882) (see for instance Espinosa and Victor (2002)
[4]), is a generalization of the Riemann Zeta function defined as follows:

S (1)
¢(s,;r)=> ———,Re(s)>1 Re(r)>0.

neo (I +n)

Notice that the Riemann Zeta function is simply {(s, 1) = {(s).

In the next section we provide a new family of distributions, the Zeta family, which is based on the Hurwitz Zeta
function, and provide its characteristic function. We also show that the well known generalized gamma family of
distributions is a special case of the proposed family. (Notice that the exponential power family of distributions, the
gamma, Weibull, Maxwell-Boltzmann and chi-squared distributions are special cases of the GG family). In section 3 we
derive the Esscher transform and premium, and in section 4 we provide the tail conditional moments and the tail
conditional expectation for members of this family. A conclusion is provided in section 5.

2. ANEW CLASS OF DISTRIBUTIONS

Let us consider the following important integral representation {(s, 7) (see [4])

we—ruus—l (2)
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I(s), 1-e

¢(s,r)=

for real s, » where s > 1, r > 0.

Theorem 17%e function
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is a probability density function (pdf), the Zeta density
Proof. Using (2) we have
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after transformation u = a¢’ we immediately get
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then it is clear that f(y;s,r,0.,0) is a pdf.
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Notice that we can calculate Hurwitz zeta effortlessly, using common mathematical packages such as Mathematica,
where the function Zetals, ] can be calculated once the values of s and r are specified.

The Zeta and GG families of distributions shares some famous special cases such as the exponential power, normal,
gamma, Weibull, Rayleigh, Maxwell-Boltzmann and chi-squared distributions (see Landsman and Valdez (2003) [7]
for the exponential power family of distributions and Christensen (1984) [3] pages (21, 149, 175, 160, 161, 147) for the
other distributions, respectively). However, there are additional models which belongs to the proposed family of
distributions but which are not members of the GG family. From the great variety of models, examples of seven such

models are given in Table 1.

Table 1. Special cases of the proposed family of distributions.

Parameters pdf

Model 1 s=3r—a=8=1 %(3)16 Zyy,yE[O 0)

Model 2 . R _ 395/2 7yl
s=hr=a=2[=3 GG 1 Y € [0,00)

—10 2
Mogel 3 s=3r=10a=28=1 | glms ity <[0,00)
1728

Model 4 6y>
s=6r=8a=40=2 c i ¥ € [0,00)

Model 5 124811
s=r=12 @_Q,ﬂ_G 1/6”2245288 l_yy6ay€[0 OO)

Model 6 768 —6y° 2
s=24r=6,a=2,8=3 L8 -ZT] g, 55‘2y32%215/ € [0,00)

Model 7 N
s=8r=4a=0=2 39;6471“7:%2,?/6[0 o0)

In Figs. (1) and (2) we notice that as the values of s and a respectively, are getting larger the right tail of the
distribution is getting heavier. For Figs. (3) and (4) we see that as r and f are getting larger the right tails of the

distributions are getting thinner.
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Fig. (2). Graph of the pdf (3) for s=5, r=2, =3 and for various values of a (for a=2 this is model 2).
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Fig. (3). Graph of the pdf (3) for s=3, a=2, =1 and for various values of r (for r=10 this is model 3).
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Fig. (4). Graph of the pdf (3) for s=6, r=8, a=4 and for various values of  (for f=2 this is model 4).

We now establish properties of the Zeta family.
Corollary 1The n" moment of Y with the pdf (3) has the following form
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Proof. Using (2), the n” moment of Y is derived as follows:
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Remark 1Using common mathematical packages such as Mathematica, we can calculate the moments of the zeta

family immediately using the Hurwitz zeta function N[Zeta[s,r],n] and the gamma functionN[I'(a),n]. The level of
precision is controlled bynthe number of decimal places.

Corollary 2The characteristic function of the pdf (3) takes the following form
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Note that by differentiation of (5) with respect to ¢ and substituting # = 0 we can easily calculate the moments of the
zeta distribution explicitly.

Proof. Using the identity (2) we get
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Corollary 3The GG family of distributions takes the form of (3) for » =67, §> 0 and & —

Proof. Using (3), we take the limit of the constant of the pdf with respect to a as follows:
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Then, applying this limit and substituting » = ” we immediately get
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3. ESSCHER TRANSFORM AND PREMIUM
Esscher transform (ET), which takes the form
e e” f (y;s,r,a,p)
fo(yis.roa,p)> £ (yis,r,a,B,0)= - - , (6)
J’e”y f,(y;s,r,a,B)dy

0

is a proper tool in risk measurement and portfolio allocation (see, for instance, Landsman (2004) [6] and Bithlmann
et al. (1998) [2]).

Before we provide the ET for the Zeta family of distributions let us recall the generalized Hurwitz Zeta function
which was introduced and studied in Raina and Chhajed (2004) [10], as follows:

© g-1 —ay—by72
e

0 (xa,ab)=— dy 0
M) o)

where a, a, b e C,u>1,A>0,x € R and Re(a) > 0, Re(b) > 0. In the case a > 0, x, 4 = 1, and a > 1, the parameters b
and / can take negative values.

Remark 2Using common mathematical Packages such as Mathematica, we can compute (7) by numerical
integration procedures with accuracy of n digits. In the case of Mathematica we simply write

a-1 —ay—by_}L

NIntegrate [ﬁ,{y,o, Infinity }, WorkingPre  cision — n]-
1-xe

@®

F(a).

Example 1Using (8), forA=-1/3, u=1,x=1,a=4,a=2, b=-0.5 and under precision of 7 digits of the function
(7) we get, in a split of a second,

-13
1

©," (142, -05 )~ 0024823,
Theorem 2Using (6), the ET of the Zeta family has the following form

ET

f,(y;s,r,a,B)—> £, (y;s,r,a,B,0)

o

e” f, (yis;ra,B) pa e” "y ©)

o

0

> e

where w is a strictly positive parameter.

Proof. Using the form of Esscher transform (see [2]) we write
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After introducing the transformation o’ = u into the integral, we obtain
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Now, using (7), it is clear that

-1

S S
r(i) - S r ,B Eewy e 1
fY*(y;S,r,a,ﬂ,a)): %@ ﬁ( E r o ) o yﬂ
bWl e a =, )r 1-e@
APy £ )
— ﬂaﬁ [®;( i L G )}_ ewyfryﬁysfl
S Bla’ 1_p”
I
(ﬂ)
- ﬂaz e&’;/*yﬁys—l
1-e”

S8 1)

Esscher premium, which takes the form

(10)
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is the expectation of a random variable Y with a pdf obtained by the Esscher transform f* This premium is

interpreted as a pure loading premium for Y : f*(y)(see [6] and [2]).
Theorem 37he Esscher premium of the random variable Y with the pdf (3) is expressed as follows:

(. S-1 1 w s+1
®1ﬁ(1) ”_1/,6] I-_1( )
(04 o

T £ om0 a
B S T 0] (=
@1 []uﬁaaa 1/,3) (ﬂ)
Proof. By the definition of Esscher premium (see [6]) we write
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Remark 3Notice that the Esscher premium of Y can be also expressed as follows

n -1 n+1

n
s+n r S+n, - s+n+1 r s+n+1, —(&

. @'¢( *)F( )a wwi(if)r( o’
H =Y —7F b > p P >0, (2

n=0 n! n=0 n!

(12) was derived by taking the series expansion of ¢” and by considering the pdf (3).

4. TRAIL CONDITIONAL MOMENTS FOR THE ZETA FAMILY

Risk management heavily relies on risk measures. The Tail Conditional Moments (TCM) are risk measures which
includes the two important cases, the Tail Conditional Expectation (TCE) and the Tail Variance Premium (see Artzner

et al. (1999) [1], Landsman and Valdez (2003) [7], Furman and Landsman (2006) [5] and Landsman, Makov and
Shushi (2013) [8]).

In this section we show how the TCM can be calculated for the Zeta family. First, we introduce the incomplete
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Hurwitz Zeta function as follows:

_ 1 we—ruus—l
2,1 X)) =——|—
I'(s)s 1-e

(13)

where x > 0. Notice that since we know that for x = 0 the function Z(s,r,x) is the Hurwitz zeta function, it is clear
that ZE(s,r,x) exists for any x > 0. Notice that this function can be reduced to the sum of weighted incomplete gamma

r(x,r+k)

functions as follows E(s,r,x) = zk:o (r N k)s ' where is the well known incomplete

r(x,t)= Ie’”u"ldu
X
gamma function. We avoid calculating infinite sums by resorting to numerical integration as explained in the next
remark.
Remark 4Notice that Z(s,r,x) can be calculated numerically (Such as Remark 2), with accuracy of n digits, by

common mathematical packages. In the case of Mathematica we write

-ru, ,s-1

NIntegrate[%,{u, X, Infinity}, WorkingPrecision — n].i. (14)
1-e™ r'(s)

Example 2Using (14), for s =5, r =2, x = 2 and under precision of 7 digits of the function (13) we get, in a split of
a second,

=(5,2,2) ~ 0.009142.

Theorem 4The n" TCM of the Zeta family for quantileq € (0,1) takes the form

S+n S+

—_ nr
TCM (Y =EN"|Y >y, ]= : ] a (15)
S r\..,S, 3 —q
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Proof. Using (13) it is clear that
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Corollary 47The TCE of the Zeta family takes the form
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rCh = e
TCE,(Y)=E[ |Y >y, |= — g . (16)
2 b 2\, 8
C(ﬂ,a)r(ﬁ)a

L

Proof. The result follows from Theorem 3 for n = 1.

5. CONCLUSION

In this paper we derived the new Zeta family of distributions based on the well known Hurwitz Zeta function, which

is a generalization of the Riemann Zeta function. The pdf of the family has the following form

x|

e—ryﬂ ys—l

pPa

rcsy1-e”
,a)l"(ﬂ) €

fy (yis,r,a, B) = y20,

S

§(ﬁ

where s > a, and r, a, f > 0, and is shown to include the GG family. We further constructed the n" moment of this

family, and provided additional properties of members of the family, including the Esscher premium and TCM.

We notice that this 4-parameter family is useful for statistical calibration of risk-management data, using, for

example, the method of moments. However, this is beyond of the scope of the present paper.
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