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Abstract: In this paper, we consider the problem of modeling and predicting highway accidents in the presence of 
randomly changing winter driving conditions. Unlike most accident prediction models in the literature, which are typically 
formulated in a static (e.g. regression models) or discrete time (e.g. time-series models) setting, we propose a continuous-
time stochastic model to describe the relation between highway accidents and winter weather dynamics. We believe this to 
be a more natural way to describe discrete-event highway accidents that occur in continuous-time. In particular, the 
accident counting process is viewed as a non-homogeneous Poisson process (NHPP) with an intensity function that 
depends on a (Markovian) weather process. Such a model is known in the stochastic process literature as a Markov-
modulated Poisson process (MMPP) and has been successfully applied to queuing and telecommunications problems. One 
main advantage of such an approach, is its ability to provide explicit closed-form prediction formulae for both weather 
and accidents over any future time horizon (i.e. short or long-term predictions). To illustrate the effectiveness of the 
proposed stochastic model, we study a large winter data set provided by Ministry of Transportation of Ontario (MTO) that 
includes motor vehicle accidents on Highway 401, the busiest highway in North America.  

Keywords: Highway accidents, Winter driving conditions, Stochastic modeling, Markov-modulated Poisson process, 
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1. INTRODUCTION 

 Generalized linear regression models and generalized 
linear mixed regression models have been widely considered 
to model crash data and analyze the effects of different 
factors (e.g. weather) on safety. Typical models include the 
binomial, Poisson, Poisson-Gamma, zero-inflated Poisson 
(ZIP), beta-binomial, multinomial and mixture models [1-8]. 
For a recent comprehensive review of this literature see [9]. 
In such models, explanatory variables are considered as 
deterministic variables that affect the frequency of accidents. 
However, when explanatory variables are autocorrelated 
and/or stochastically change over time, predicting future 
outcomes based on observable present conditions is not 
always suitable in the standard regression analysis 
framework. 

To account for this time dependency, some researchers 
have considered regression models applied to time-series 
data [10-14]. For example, [15] proposed an ARIMA model 
to forecast the highway collision frequencies. [10] proposed 
a so-called inter-valued autoregressive (INAR) Poisson 
model to improve the performance of the ARIMA model on 
collision count data in Great Britain. Recently, [16] reported 
that most studies use monthly or yearly data, and only few 
studies analyze the impact of weather conditions on daily car 
crash counts. Using metereological data from the  
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Netherlands, the authors analyzed the daily crash data using 
a time-series approach. Although the time series approach 
allows for time-dependent stochastic explanatory variables, 
researchers have found the approach to be overly 
complicated and even problematic when predicting future 
accidents. For example, recent studies of [17] and [9] 
concluded that time-varying covariates are difficult to 
account for, and subsequent findings are even more difficult 
to interpret. 

In this paper, we take a different perspective than the two 
aforementioned approaches. We propose a continuous-time 
stochastic model to describe the relation between highway 
accidents and winter weather dynamics, which we believe to 
be a more natural way to describe discrete-event highway 
accidents that occur in continuous time. In particular, the 
accident counting process is modeled as a non-homogeneous 
Poisson process (NHPP) with an intensity function that 
depends on a (Markovian) weather process. Such a model is 
known in the stochastic process literature as a Markov-
modulated Poisson process (MMPP) and has been 
successfully applied to queuing and telecommunications 
problems [18-23]. Generally, MMPP models are suitable 
when the systems and components function in a randomly 
changing environment. Thus, the MMPP is able to capture 
accidents with randomly changing weather conditions. The 
advantage this model has over standard regression models is 
its ability to handle autocorrelated, time-dependent 
stochastic covariates in continuous time. Furthermore, unlike 
the time series approach, it is able to provide explicit, closed-
form prediction formulae for both weather and accidents 
over any future time horizon (i.e. short or long-term 
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predictions). This is an attractive feature in practice since 
predictions are extremely easy to implement and interpret. 
To our knowledge, MMPPs have never been applied to 
accident prediction problems under stochastically changing 
weather conditions. 

We now provide an overview of the contributions and 
findings of this paper. In Section 2, we describe the 
stochastic MMPP model in detail. The likelihood function is 
expressed in a closed-form and maximum likelihood 
estimates are obtained for the model parameters. Predicting 
future accidents is then discussed through the so-called 
Operational Performance Function (OPF). Explicit closed-
form prediction formulae are developed for accidents over 
any future time horizon of length 0>h  (i.e. short or long-
term predictions). In Section 3, we describe the accident and 
winter weather data sets. In particular, we consider collision 
data during the winter months of 2000-2007 on Highway 
401, the busiest highway in North America. The collision 
data comes from the Ministry of Transportation of Ontario 
(MTO) and the weather information data comes from 
Environment Canada. In Section 4, the MMPP model is 
applied to the real data sets, and MLE and prediction results 
are provided. Section 5 contains concluding remarks. 

2. STOCHASTIC MODEL AND METHODOLOGY 

In this section, we provide a detailed description of the 
Markov-modulated Poisson process (MMPP) and show how 
it can be used to model the accident and weather processes. 

The MMPP assumes that collisions on a well defined 
highway segment follow a point process ):( +!RtNt  with 
intensity function 
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t
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) . The random variable tN  represents 

the number of accidents that occur by time +!Rt . The 
random variable tX  represents a categorical weather 
condition (e.g. snow, rain, haze, etc.) at time +!Rt  that is 

common to all drivers and takes values in a discrete set 
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The weather process ):( +!RtXt  is assumed to follow a 
continuous-time homogeneous Markov chain with generator 

NNxyq !)(=Q  and initial distribution 
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X!x . The dynamics of the the MMPP are graphically 
illustrated in Fig. (1). 
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Our first objective is to determine the maximum 
likelihood estimates (MLEs) for unknown parameters in sets 
! , Q  and ! . 

2.1. Maximum Likelihood Estimation 

Both the accident process 
  
(N

t
)  and weather process 

  
( X

t
)  are continuously observed over a fixed period 

  
[0, s

n
] , 

where 
n
s  is the time of the n th transition of the weather 

process )( tX . During the interval 
  
[0, s

n
] , we denote the 

weather observation sample as 

 
Fig. (1). Graphical illustration of the Markov-modulated Poisson process applied to highway accidents and weather dynamics. The bottom 
row is the (Markov) state diagram for the weather process. The top row shows the different possible crash intensities that depend on the 
current state of the weather. 
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We now have the likelihood function (see e.g. [21]):  
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where 
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The log likelihood function is obtained as follows. 
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The MLEs can then be found by maximizing equation (5) 
with respect to each parameter in sets ! , Q  and ! . Using 
standard univariate optimization arguements it is not difficult 
to show that the MLEs are given as follows:  
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xuk =)(!  in the first sum on the right hand side of (5). 

2.2. Accident Predictions And The Operational 
Performance Function 

 Once the MLEs have been obtained using equation (6), 
we can move to predicting the expected frequency of 
accidents over any future time horizon   h > 0 . Since the 

accident process 
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t
)  and the weather process 
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observed over a fixed time interval ][0,s , we are interested in 
the evaluating the following conditional expectation:  
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which represents the expected number of accidents that will 
occur over the next h  time units, given all accident and 
weather information until time s . We can think of )(hOs  as 
a function of  h , i.e. 

   
h a O

s
(h) . This function is known as 

the operational performance function (OPF). 
In terms of prediction, the goal is to give an explicit 

closed-form expression for the OPF defined in (7). We have 
the following result. For any 0>,hs , the OPF can be 
explicitly computed via the following equation:  
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using the MLEs Q̂  and !̂  given in equation (6). Equation 
(8) shows that accident predictions can be computed 
explicitly over any future time horizon (i.e. for any value of 
h). Therefore, our model works well for both short and long-
term accident predictions. In the next section, we describe 
the winter weather data set provided by the Ministry of 
Transportation of Ontario (MTO). 

3. DATA DESCRIPTION 

 The site specific database provided by Ministry of 
Transportation of Ontario (MTO) includes the motor vehicle 
collision database (MVAB) from 2000-2007 in Ontario. The 
weather data set comes from Environment Canada. The 
MVAB data from 2000-2007 was carefully examined and 
the highway segment with the highest winter collision 
frequency was selected for this study. Based on the analysis, 
Highway 401, starting from Highway 404 and ending at 
James Snow Parkway (segment number: 47635 - 47695) was 
selected for the MMPP analysis (see Fig. (2). 

From Environment Canada, eight main types of weather 
conditions were reported during the winter months of 2000-

Table 1. Winter Weather Conditions Reported by 
Environment Canada 

Weather Index (x) Description of Weather Condition 

1=x  clear 

2=x  cloudy 

3=x  rain 

4=x  snow 

5=x  drizzle 

6=x  ice 

7=x  fog 

8=x  haze 
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2007. The eight identified weather contions (and their 
respective indices) are summarized in Table 1. In the next 
section, the MMPP model is applied to the real highway 
accident and winter weather data. Data from years 2000-
2006 are used as training data and the winter data of 2007 is 
used to evaluate our model predictions.  

4. RESULTS 
In this section, we apply the MMPP results developed in 

Section 2 on the data set described in Section 3. In 
subsection 4.1, we first discuss reducing the number of 
weather states  N  (and hence the number of model 
parameters) using a novel clustering approach. In subsection 
4.2, MLEs are obtained using winter data from 2000-2006 
and goodness-of-fit tests are performed. In subsection 4.3, 
we use the fitted model based on the 2000-2006 winter data 
to make predictions for winter data from 2007 using the 
Operational Performance Functions (OPFs) defined in 
equation (8). 

4.1. Determining the Number of Weather States N 

In this subsection, we discuss how to determine the 
appropriate number of weather states N . Although 
Environment Canada categorized weather states into eight 
main conditions, to avoid over parameterization, it is 
possible to ``cluster" conditions with similar statistical 
properties to define a weather process with 8<N  states. The 
simplest division of the weather states is to cluster 
precipitation and non-precipitation conditions as a MMPP(2) 
model Ramesh. Recall, from the MLEs given in equations 
(6), the estimates for the intensity rates 

x
!  are given by the 

statistic 
  

n
x
(u)

!
x

. We plot this statistic for each possible 

weather condition and obtain the plot in Fig. (3). 

Fig. (4) shows that there are natural “clusters” of weather 
states that have different intensities of collisions. We apply 
the K-mean clustering algorithm and determine that there are 
three natural groups of weather states with significantly 
different collision intensities. 

After classifying the weather conditions, we define the 
weather process ):( +!RtXt  to have state space 

 
! = 1,2,3{ }  

with state interpretations given in Table 2 . 

4.2. Maximum Likelihood Estimates and Goodness-of-Fit 
Test 

In this subsection, we determine the maximum likelihood 
estimates of the model parameters. The weather process 

):( +!RtXt  is assumed to have state space 
  
X = 1,2,3{ }  

defined in Table 2. Using equation (6), the maximum 

 
Fig. (2). Highway 401, starting from Highway 404 and ending at James Snow Parkway, had the highest winter accident frequency and was 
selected for the MMPP analysis. 

Table 2. Clustered Weather Conditions Based on the K-means 
Clustering Algorithm 

Weather Index (x) Description of Weather Condition 

state 1 clear, cloudy, rain, fog and haze 

state 2 snow, drizzle 

state 3 ice 
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likelihood estimates of parameters are given by: 
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 We next validate the model assumption made by the 
MMPP that accident rates are constant (i.e. have no other 
dependencies) in a given weather state. We first compute the 
95 % confidence interval (CI) for the MLEs of the intensity 
rates. Table 3 shows that the CIs are very tight, which 
indicates that the constant intensity assumption is reasonable. 
To test this hypothesis more rigorously, we perform the 
Laplace test (see e.g. [21]) which tests the follow null 
hypothesis:  

H0: the underlying point process is a homogeneous 
Poisson process  

H1: the underlying point process is a non-homogeneous 
Poisson process with increasing/decreasing density.  

The test statistic is given by  
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which follows a t-distribution under null hypothesis. The 
corresponding p-values for each of the three intensities are 

given in Table 4. The p-values support hypothesis that the 
collision rate is constant in each of the weather states. 
4.3. Performance Testing via the OPF 

 In this subsection, we use the 2007 year winter data (De-
cember, 01st, 2006 to March, 31th, 2007) to test the MMPP 
model prediction capabilities. The predicted value (i.e. OPF) 
is calculated using equation (8), and represents the expected 
number of collisions over a future interval of length h given 
the current weather condition. We consider different time 
intervals of length h = 3,6,12,24 hours. 

The predicted values are compared with actual 2007 
winter collision data. The way we compute the actual 
average number of collisions over a future interval of length 
h = 3,6,12,24 hours is as follows. We first divide the entire 
winter season of 2007 into segments of length h. At the 
beginning of each segment we identify the current weather 
state x = 1,2,3. We then compute the total number of 
collisions that occur during segments that start in weather 
condition x and jump to weather condition j (where ij ! ), 
and divide by the total number of such segments. 

Table 5 and Fig. (5) show forecasting results for different 
forecasting lengths (i.e. h = 3,6,12,24 hours) starting in 
different weather conditions, x = 1,2,3. The results show that 
the model is able to predict future collision frequencies well, 
and predictions are particularly good for the short time 
lengths h. 

We next compare our 3-hour prediction results with a 
standard homogeneous Poisson model, which assumes that 
the collision counting process follows a homogeneous 
Poisson process with parameter !  that does not change with 
the weather process. The result is shown in Fig. (6) with 
predicted value as 2.4453 . 

Table 3. 95%  confidence Intervals for the Intensity Estimates 

 1!  2!  3!  

MLEs 0.6803 1.334 2.7 

95%  CI ±  0.0024 ±  0.012 ±  0.61 

Table 4. p-Value of the Laplace Test, which Confirm Constant Intensity Rates 

 1!  2!  3!  

xU  -1.2500 0.76 0.3192 

p-value 0.2113 0.4473 0.7496 

Table 5. Collision Frequency Comparison 

  3 Hours 6 Hours 12 Hours 24 Hours 

State 1 
predicted 

actual 

2.15 

1.87 

4.42 

3.7531 

9.07 

7.5923 

15.673 

19.4 

State 2 
predicted 

actual 

3.43 

3.7478 

6.2 

7.5942 

11.12 

14.713 

26.159 

21.247 

State 3 
predicted 

actual 

5.274 

7.4615 

8.28 

13 

13.2 

21.846 

22.61 

29.692 
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Fig. (3). Accident rate in each weather conditions. 

 
Fig. (4). MLEs shows three distinct weather status using the K-means clustering algorithm. 

 
Fig. (5). Three hours prediction comparison of dynamic MMPP and Poisson model. 
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Fig. (6). Three hours prediction comparison of dynamic MMPP and Poisson model. 
 

Fig. (6) clearly illustrates the benefits of our dynamic 
MMPP. Since the standard Poisson model is not a dynamic 
model, when the weather process enters states two and three, 
the collision frequency is severely underestimated. This 
suggests that using a weather-dependent dynamic model will 
provide much better predictions for collision frequencies. 

5. CONCLUSIONS 

In this paper, we considered the problem of modeling and 
predicting highway accidents in the presence of randomly 
changing winter driving conditions. Unlike most ccident 
prediction models in the literature, we proposed a 
continuous-time stochastic model to describe the relation 
between highway accidents and winter weather dynamics.In 
particular, the accident and weather processes were modeled 
as a Markov-modulated Poisson process (MMPP). One main 
advantage of our approach is that it provides explicitly 
closed-form prediction formulae for both weather and 
accidents over any future time horizon (i.e. short or long-
term predictions). It was shown that the likelihood function, 
maximum likelihood estimates, and operational performance 
functions all have closed-form expressions. To illustrate the 
effectiveness of the proposed stochastic model, we studied a 
large winter data set provided by Ministry of Transportation 
of Ontario (MTO) that includes motor vehicle accidents on 
Highway 401. Our results indicate that the MMPP model 
performs well for predicting accidents, and provides much 
better predictions for collision frequencies compared with 
the standard and static Poisson model. 
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