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Abstract: Understanding of tissue growth is in its nature multidisciplinary, since it varies from cancer diagnostics, image 
processing, fractal analysis to regular and non-regular heat flows. By medical sciences it was requested to better under-
stood the tissue grow relation to mathematical modelling (stochastic geometry, fractal growth, diffusions). It is clear, that 
deterministic fractal is not an appropriate model for cancer growth. Stochastic fractal is more appropriate, however, a 
validation measure should be developed for better comparability with advanced stochastic geometry model, e.g. Quer-
mass-interaction process. Moreover, relation temperature-geometry of the tissue is studied. We have partial results, where 
it is observed, that benign alterations and malignant tumors originating from glandular tissues (e.g.mammary, prostatic, 
pancreatic) are naturally modelled by non-standard diffusions. For standard diffusions, fair approximation is provided by 
analytical models based on convective heat transfer in infinite tissues volume (e.g. model given by Perl 1962, later ex-
tended by [1]). 
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1. INTRODUCTION 

 Tumor growth has become a paradigmatic example of 
multidisciplinary research, where biology and mathematics 
have met each other to deal with a multiscale problem. Can-
cer is often characterized as a chaotic, poorly regulated 
growth. Not surprisingly, the irregular shapes of cancerous 
cells, tumors, and vasculature defy description by traditional 
Euclidean geometry, which is based on smooth shapes such 
as the line, plane, cylinder, and sphere [1]. In contrast, fractal 
geometry reveals how an object with irregularities of many 
sizes may be described by examining how the number of 
features of one size is related to the number of similarly 
shaped features of other sizes. Moreover, it was observed in 
several studies, e.g. [2] that more natural structure is mul-
tifractality, since we expect individual variations of box 
counting dimensions within the sample (see e.g. [3]). 

Stochastic fractal is more appropriate, however, a valida-
tion measure should be developed for better comparability 
with advanced stochastic geometry model, e.g. Quermass-
interaction process. Anyhow, several statistical procedures 
can be developed on stochastic geometry arguments, see e.g. 
[4]. By focusing on the irregularity of tumor growth rather 
than on a single measure of size such as diameter or volume, 
fractal geometry is well suited to quantify those morphologi-
cal characteristics that pathologists have long used in a quali-
tative sense to describe malignancies-their ragged border 
with the host tissue and their seemingly random patterns of  
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vascular growth. It is known that fractal geometry can be 
appropriate tool for describing some pathological architec-
tures of tumors, or maybe more surprisingly, mechanism of 
tumor growth and angiogenesis that complement those ob-
tained by modern molecular methods. The directional motil-
ity (chemotaxis) of cancer cells is an important aspect of 
metastasis. 

We should consider a mathematical model which as-
sumes that the underlying space is not smooth in some sense. 
For example there is a large literature on PDEs on domains 
with nonsmooth boundary. But most of the results require 
assuming boundary to be Lipschitz; this is just barely 
nonsmooth, since a Lipschitz boundary has a tangent plane 
almost everywhere. The area of fractal analysis deals with 
analytic question in which the underlying space has fractal 
structure. There exists a well developed theory of Laplacians 
on a class of fractals including the familiar Sierpinski gasket. 
As far as is known there are two main approaches. This the-
ory may be obtained indirectly through the construction of 
probabilistic processes analogous to Brownian motion, and 
the Laplacian emerges fully formed, but not in a truly con-
structive manner. We refer works such as [5-8]. The disad-
vantage is that it does not provide a method to actually do 
computations. The second approach, based on calculus was 
introduced by Jun Kigami, see [9, 10]. In calculus, opera-
tions on functions can be defined as limit of discrete 
analougues. On Sierpinski gasket and related fractals, the 
basic operations as Laplacian, normal derivative, energy can 
be defined as limits of discrete operations on a sequence of 
graphs whose vertices approximate the fractal, see the tuto-
rial of Strichartz [11]. It is well-known that there is a one to 
one correspondence between symmetric diffusion processes 
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and the self adjoint operators which are generators of them. 
It is also well-known that they have a one to one correspon-
dence to some quadratic forms called Dirichlet forms. To 
define a Laplacian Δ  on a fractal F, one needs such a form 
which is a analogue of 

  
|!f |2 dx"  on n

! , and a measure on 
F. 

Since then, for the last several decades, diffusion proc-
esses (and the corresponding self-adjoint operators) have 
been constructed on various classes of fractals and their 
properties have been deeply studied. It is now getting clear 
that the diffusions on fractals have completely different 
properties from diffusions on Euclidean spaces. For instance, 
it is understood that such processes typically have sub-
diffusive behaviour and heat kernels for Brownian motion on 
’nice’ fractals enjoy sub-Gaussian estimates. 

Paper is organized as follows. First we introduce fractals 
and self-similarity. In particular, random self-similar sets are 
introduced. Stochastic diffusion over the fractal set is intro-
duced. Then analytic approach is given in Section 3 via 
Dirichlet form techniques. In particular PDE for diffusion 
and heat flow is introduced together with recent development 
of heat flow modelling in human tissues. Model of tumor 
growth is given and anomalous diffusion introduced. 

2. SELF-SIMILAR SETS AND FRACTALS 

There occur (physical) phenomena on those objects mod-
eled by fractals. The pioneering work in this field is by 
mathematical physicists who have tried to analyze properties 
of disordered media such as heat transfer and wave transfer. 
Examples of disordered media are: polymers and networks 
where the objects are deterministic; phenomena like growth 
of molds and crystals where the objects are random. How 
can we describe them? More precisely, how does the heat 
diffuse on fractals and how does a material with such struc-
ture vibrate? Since fractals do not have any smooth struc-
tures, to define differential operators is not possible from the 
classical viewpoint of analysis. The biggest problem is how 
to treat such physical phenomena in a rigorous way. To 
overcome such difficulty is a new challenge in mathematics. 

Fractal sets and measures are mathematical models of 
non-integer dimensional sets and ”grey-scale” images satis-
fying certain scaling properties. Mandelbrot introduced the 
term fractal and developed the connection between these 
ideas and a range of phenomena in the physical and biologi-
cal sciences. A mathematical fractal looks the same at all 
scales of magnification. This is an approximation to physical 
fractals which appear similar to the original object only for a 
certain range of scales. A theory of (self-similar) fractal sets 
and measures and the notion of a scaling operator (iterated 
function system) was developed by Hutchinson in [12]. Sets 
with non-integral Hausdorff dimension (fractals) when they 
have the additional property of being in some sense either 
strictly or statistically self-similar, have been used exten-
sively by Mandelbrot and others to model various physical 
phenomena. The key notion is ”self-similar structure”, which 
is a description of a self-similar set from a purely topological 
viewpoint. As we will explain immediately, topological 
structure of a self-similar set is essential in constructing ana-

lytical structure like Laplacians and Dirichlet forms (Mark-
ovian closed symmetric forms on L2 space studied in abstract 
potential theory). More precisely, if two self-similar sets are 
topologically same (i.e. homeomorphic), then analytical 
structure on one self-similar set can be transferred to another 
self-similar set through the homeomorphism. From the 
viewpoint of analysis, only the topological structure of a 
self-similar set is important. For example, suppose you want 
to know what is analysis on the Koch curve. There exists a 
natural homeomorphism between [0, 1] and the Koch curve. 
Through this homeomorphism, any kind of analytical struc-
ture on [0, 1] can be translated to its counterpart on the Koch 
curve. So it is easy to construct analysis on the Koch curve. 
The Sierpinski carpet is a fractal subset of  !2  defined as the 
fixed point of a family of eight contraction maps. We can 
equivalently construct the fractal by taking [0, 1]2, dividing it 
into nine equal squares of side length 1/3, and removing the 
central square. This procedure is then repeated for each of 
the eight remaining squares and iterated infinitely. The car-
pet is the resulting fractal and has Hausdorff dimension 
df = ln8 / ln3. A fundamental geometrical property of this set 
is its infinite ramification, in that any connected subset of the 
fractal can only be disconnected from the rest by removing a 
set of dimension 1. This makes analysis on this set much 
more difficult than for the case of the Sierpinski gasket. 

2.1. Random Self-Similar Sets 

Sets with non-integral Hausdorff dimension are called 
fractals by Mandelbrot. Such sets, when they have the addi-
tional property of being in some sense either strictly or statis-
tically self-similar, have been used extensively by Mandel-
brot and others to model various physical phenomena. In 
paper [12] author set up a theory of (strictly) self-similar 
objects. We say the compact set  K ! "

n  is invariant with 
respect to S if there exists a finite set S = {S1, . . . , SN } of 
contraction maps on K such that  

   

S = S
i
K

i=1

N

U  

It turns out, somewhat surprisingly at first, that the in-
variant set K is determined by S. In fact, for given S there 
exists a unique compact set K invariant with respect to S. 
Furthermore, K is the limit of various approximating se-
quences of sets which can be constructed from S. However, 
the fractal objects (processes) we encounter in nature are 
usually not generated by exact mathematical rules. The most 
fractal-looking natural object are not, however, precisely 
self-similar but are self-affine. If the similarity is not de-
scribed by deterministic laws stochastic resemblance criteria 
can be found. Such an object is said to be randomly (statisti-
cally) self-similar. 

The term random fractal is used for these fractal struc-
tures to underline their statistical character. For this let (Ω, A, 
Σ) be the underlying probability space and S = {S1, . . . , SN } 
be a random variable. We write S = dist S for the probability 
distribution determined by S. By =d we denote equality at the 
probability distribution level. If K is a random set, then the 
random set SK is defined (up to probability distribution) by 
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SK = S
i
K

( i)

i=1

N

U  

where 
(N)

,
(1)  , , KKS …  are independent of one another and 

K(i) =d K. We say K is a selfsimilar random fractal set, if SK 
:d K. Beginning with a (nonrandom) set K_0 one defines a 
sequence of random sets 

   

SK
0
= S

i
K

0

i

U , 

   

S
2
K

0
= S

i
o S

j

i
K

0

i, j

U , 

   

S 3K
0
= S

i
o S

j

i
o S

k

ij K
0

i, j ,k

U , 

etc.; where Si are independent of each other and of S , the Sij 
are independent of each other and of S and the Si, etc. 

2.2. Probabilistic Approach 

Motivated by studies in physics, Kusuoka [7] and Gold-
stein [8] independently construdcted “Brownian motion” on 
Sierpinski gasket (SG). First they considered a sequence of 
random walks on the graphs which approximate the SG and 
showed that by taking a certain scaling factor, those random 
walks converged to a diffusion process on SG. Let V0 = 
{p1 , p2 , p3} be a set of vertices of an equilateral triangle in 
complex plane. Define 

  
f

i
(z) = 1 / 2(z + p

i
)  for i = 1, 2, 3. 

The SG K is the unique non-empty compact subset K of 
! that satisfies 

  
K = f

1
(K )! f

2
(K )! f

3
(K )  

Define a sequence of finite sets 
  

V
m

{ }
m!0

 inductively 

by
  
V

m+1
= f

1
(V

m
)! f

2
(V

m
)! f

3
(V

m
) . Then we have the natu-

ral graph Gm whose set of vertices is Vm. For p ∈ Vm, let 
Vm,p be the collection of the direct neighbors of p in Vm . 

Let X m be the simple random walk on Gm (if a particle is at 
p at time t, it will move to one of the direct neighbors with 
probability #(Vm,p)−1 at time t + 1). What they proved was 
that 

 
X

G
!m

t

m
" X

t
 

as m → ∞, where Xt was a diffusion process, called 
Brownian motion, on the SG. In this approach, a Lapacian is 
infinitesimal generator of the semigroup which is associated 
with the diffusion process. Lindstrom in [13] extended this 
construction of Brownian motion to nested fractals, which is 
a class of finitely ramified self-similar sets with strong sym-
metry (roughly speaking, finitely ramified self-similar sets 
are the self-similar sets which become disconnected if one 
remove a finite number of points). 

The previous work on infinitely ramified fractals has 
concentrated on generalised Sierpinski carpets with exact 

self-similarity. In a series of papers [14, 15], the existence 
and properties of a Brownian motion, an isotropic diffusion 
process, on the two dimensional carpet were determined. 
This process was defined as the weak limit of a sequence of 
reflected Brownian motions on a sequence of subsets of 2

!  
converging to the fractal. Using this probabilistic approach it 
is possible to examine the Laplacian and the heat kernel on 
the fractal as these are respectively, the infinitesimal genera-
tor and transition density of the Brownian motion. 

3. ANALYTIC APPROACH 

Here we consider slightly different approach, using an 
idea of Dirichlet form techniques. The Dirichlet form meth-
ods have been widely applied to finitely ramified fractals 
and, for infinitely ramified fractals. The approach of [16] is 
to define a series of graph approximations to the fractal and 
consider the sequence of Poincaré constants generated by the 
Dirichlet forms on the graph approximations.  

A Quick View of the Theory of Dirichlet Forms 

Let X be locally compact separable metric space and !  
be a positive Radon measure on X whose support is X. Let ε 
be a symmetric bilinear closed form with a domain D(ε) 
which is dense in L2(X, ! ). Pair (ε, D(ε)) is called a 
Dirichlet form if it is a Markovian (it has unit contraction 
property), i.e. for each u ∈ D(ε), v := sup(0, inf (1, u)) and 
ε(v, v) ≤ ε(u, u). Define a new symmetric form 

  
!
"

(#,#) = !(#,#) +" || # ||
L

2

2 , for all α > 0. A Dirichlet form (ε, 

D(ε)) is regular if there exist 
  
C ! D(")#C

0
( X )  s.t. C is 

dense in D(ε) with ε1-norm and C is dense in C0(X ) under 
the uniform norm. Pair (ε, D(ε)) is local if for each u, v �  (ε, 
D(ε)) whose supports are disjoint compact sets, ε(u, v) = 0. 
There is a one to one correspondence between regular 
Dirichlet forms on on L2 (X, ! ) and ! -symmetric Hunt 
processes on X except for some exceptional set of starting 
points. Further, if the regular Dirichlet form is local, then the 
corresponding process is a diffusion process (i.e. Hunt proc-
ess with continuous paths). 

Remark 3.1. The domain of the Dirichlet form on 
n

! determined by the second order differential operator is 
))(,2,1( n

Lip !" . See [17] for the fact that the domain of the 
Dirichlet form on SG is 

  
Lip(d

w
/ 2,2,!)(K ) . This fact sup-

ports that the Laplace operators on fractals are ”differential 
operators of order dw ”. Here dw = ln(N+3) / ln 2 for the N -
dimensional SG. 

For example, if we think of the usual Brownian motion in 
Euclidean space n

! , the associated Dirichlet form is given 

by 
  

!(u,v) =
1

2
"u,"v

#n

$ dx.  

The construction of the process associated with a given 
Dirichlet form, when it is possible, follows a path that looks 
something like this: 

(ε, D(ε) ) → (Tt)t≥0 → (pt)t≥0 → {Xt}t≥0 
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In [18] authors considered homogeneous random Sier-
pinski carpets, a class of infinitely ramified random fractals 
which have spatial symmetry but which do not have exact 
self-similarity. For a fixed environment they constructed 
”natural” diffusion processes on the fractal and obtain upper 
and lower estimates of the transition density for the process 
that are up to constants best possible. They proved that the 
sequence of Poincaré constants generated by the Dirichlet 
forms on the graph approximations can be used to normalize 
the Dirichlet forms to obtain the existence of a limiting 
Dirichlet form which is local and regular, and hence there is 
an associated continuous strong Markov process.  

Let F ⊂ D
!  be a bounded fractal set. In order to define 

the heat content and partition function we need to define the 
outer boundary of the set F. For each closed set A, let 
Cov(A) be the set of points covered by A. The outer bound-
ary of the fractal is defined to be ∂F = ∂ Cov(F ). The heat 
content of the carpet is the total heat energy in the carpet at a 
given time due to unit boundary conditions and zero initial 
conditions within the carpet. Let φ: ∂F → [0, ∞) be bounded 
and measurable. We write ∆F for the Laplace operator on F 
and consider the following partial differential equation in F . 
Let T: F × [0, ∞) → [0, ∞) satisfy  

  

!T

!t
= "

F
T , x #F \ !F , t > 0,

T (x,0) = 0, x #F \ !F ,

T (x, t) = $(x), x #!F , t > 0

 (3.1)  

This equation has a probabilistic representation for its so-
lution. Let {Xt} be the stochastic process with generator ∆F 
on the set F and let TA = inf {t ≥ 0: Xt A}. Then the solu-
tion to (3.1) can be written as 

  
T (x, t) = !

X
["( X

T#F

)I
{T#F

<t}
].  

The heat content EF (t) of F at time t is given by setting 
ϕ(x) = 1 for all x ∈ ∂F and defining  

  

E
F

(t) = T (x, t)µ(dx)
F

! ,  

where µ is the df -dimensional Hausdorff measure on the 
fractal F normalized so that µ(F ) = 1. 

3.1. PDE for Diffusion and Heat Flow 

We restrict our attention only for two dimensional case, 
i.e. let Ω ⊂ 2

!
 with a Lipschitz continuous boundary ∂Ω. 

Equation  

  
B
!u

!t
= "# (D"u)+ f (t, x,u),  

  x !", t > 0  (3.2)  

where u can stand e.g. for concentration or temperature, de-
scribes diffusion (rhs) and heat flow (lhs). Additionally there 
are known initial and some kind of boundary conditions. 
Notice that generally diffusion constant D can depend on 
unknown function u and if D is constant, then diffusion op-
erator becomes simply ∆. 
 

PDE for Heat Flow in Human Tissues 

In human body thermal behaviour changes under various 
physical and physiological conditions, which is of great in-
terest to biomedical scientists. In order to know the thermal 
responses in human body organs Pennes [19] in 1948 devel-
oped the bio-heat equation to calculate the steady state tem-
perature distribution in cylindrical shaped human arm. Later 
Perl [20] in 1962 has developed model of bio-heat equation 
by assuming all parameters as constant.  

(Perl 1962) used equation (3.2) to investigate solution of 
some simple problems of infinite tissue medium considering 
the whole skin as a single layer and the parameters as con-
stants. The model have been developed with the assump-
tions: 
• The biological tissue is isotropic and homogeneous 
• The physical properties of the tissue are independent 

of the tissue temperature 
• Arterial blood temperature is constant at 37 Co   
• The metabolic heat generation rate is constant per unit 

volume and unit time 
• The blood perfusion rate is uniformly spatially and 

temporally and independent of tissue temperatur 
Equation (3.2) in [1] was considered with  

u = T , B = ρc, D = K, f = M (TA − T ) + S 

where M = ρbcbφA. Here, ρ, c, K and S are respectively the 
density, specific heat, thermal conductivity and rate of meta-
bolic heat generation in tissues. Also, ρb, cb, TA and φA are 
the density of blood, specific heat of the blood, arterial blood 
temperature and tissue perfusion due to arterial blood. Here 
S denote the self controlled metabolic heat generation. 

The boundary condition for the heat transfer occurring at 
skin surface is generally included in one of the following 
kinds of conditions, see [21]: 

1. Dirichlet condition (constant temperature): 

 
T

skin
= T

!
 

2. Neumann condition (specified heat flux): 

 

!K
"T

"n
skin

= q
s

 

3. Convective condition: 

  

!K
"T

"n
skin

= h(T
#
! T )  

4. Radiation condition: 

  

!K
"T

"n
skin

= #$ (T
%

4
! T

4 )  

where n is the outward normal at the boundary of computa-
tional domain, qS is constant heat flux, ε is skin emissivity 
and σ is Stefan-Boltzmann’s constant in [ W/m2K4]. Moreo-
ver, h is the convective heat transfer coefficient for natural 
convection between skin tissue and air and T∞ is the tem-
perature of the ambient temperature. 
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Wissler [22] extended this model by taking into account 
the heat loss through respiration and counter current heat ex-
change between large arteries and large veins to obtain the 
temperature profile of the entire body. Cooper and Trezek [23] 
made an attempt to obtain analytical solution by assuming all 
parameters constant. Chao et al. [24, 25] investigated the 
steady and unsteady models with all the parameters as con-
stant. Mitchell et al. [26] developed an analytical model to 
predict temperature levels as function of time in human legs. 
Song et al. [27] have developed a combined micro and macro 
vascular model for whole limb heat transfer. Some experimen-
tal attempts have been carried out by Patterson [28]. Saxena et 
al. [29-31] have developed one and two dimensional model of 
temperature distribution in human body tissues using different 
techniques like finite element method (FEM), analytical 
method and pseudo-analytic method etc. Pardasani and Ad-
lakha [32] have developed two dimensional model in dermal 
regions of human limbs by using coaxial circular elements. 
They have also developed a model to obtain exact solution of 
heat flow problem in peripheral tissue layers with a solid tu-
mor in dermis regions of human limb [33]. Agrawal et al. [1, 
34, 35] have developed two and three dimensional model to 
study temperature variation in dermal regions of nontapered 
and tapered elliptical shaped human limbs. However, all these 
works have been concentrated only for regular shape human 
organs but in reality human limb is not throughout regular 
tapered cylindrical in shape it may be considered irregular 
tapered in shape. In view of above three dimensional steady 
state model has been developed to study temperature distribu-
tion in dermal regions of irregular tapered cylindrical shaped 
human limbs. The structure of the limb is not same through-
out, considering the shape of the upper limb may be tapered, 
nontapered, elliptical or circular [36]. For those regions where 
it resembles with elliptical shape have eccentricity greater than 
zero and less than one and where it resembles with circular 
shape has the eccentricity zero. The radius and eccentricity 
varies according to the shape of the limb. In order to incorpo-
rate circular and elliptical shapes at different axial positions, 
the eccentricity and radius of the limb is taken variable along 
axial direction. Hence radius can be taken as a l-th degree 
polynomial of z as shown below where l can be any finite 
positive integer. The different values of l will give different 
shapes of the limb [1].  

After developing the mathematical model for temperature 
distribution in SST region of irregular tapered shaped human 
limbs, incorporated the values of the different parameters 
involved through various experimental papers [11, 26]. Fi-
nite element technique has been used as in our previous pa-
per [1] to solve the mathematical model, computed the re-
sults by using Matlab 7.5 and obtain the graphs to validate 
the results with the physiology of the upper limb. 

Fig. (1a) to (e) are the two dimensional graphs between 
angular coordinates and temperatures. Fig. (1f) is three di-
mensional graphs between angular coordinates, radial coor-
dinates and temperatures. In these graphs the temperature 
falls along radial direction and effect of boundary condition 
on temperature distribution is also observed along radial di-
rection. This effect of boundary condition on temperature 
distribution is observed to be decreasing along radial direc-
tion. This may be because the most of the heat is transported 
from core of the limb through SST regions along radial di-

rection to the outer surface of the limb from where it is lost 
to the environment. Also the change in the slope is observed 
at junctions of tissue layers along radial direction. This may 
be due to different physical and physiological properties of 
each layer. Also we see that as soon as we move from one 
end to another end of the limb along axial direction tempera-
ture decreases. This is due to change in the shapes of the 
human limb at different axial position in a irregular tapered 
shape human limb. The change in the shape causes the 
change in the area of the limb expose to the environment 
thereby causing the change in heat transport in the dermal 
tissues and heat loss from the outer surface to the environ-
ment. The results obtained indicate that the effect of shape 
and size of different portions of limbs have significant effect 
on temperature distribution in dermal layers (SST) of human 
limbs. The finite element as proved to be quite powerful and 
effective in modelling the problem of temperature distribu-
tions in dermal layers of irregular tapered shaped human 
limbs as it was possible to deal with nonregular structures in 
terms of combination of multiple regular substructures. 
Model of Tumor Growth 

For simplicity we consider a model, see [37], depending 
on 
• the nutrient concentration σ  
• the internal pressure p of the proliferating tissue  
but does not on  
• the concentration of inhibitors  
• the effect of angiogenesis 
• the presence of the necrotic zone 
and the proliferation rate is linear i.e. µ(σ − σ̃ ), µ > 0. The 
tumor receives nutrients throught the boundary, where the 
concentration is a constant σ̂ > σ̃ . The diffusion equation 
(3.2) contains 

u = σ, B = c, D = 1, f  = −λ σ, 

where Ω = Ωt is evolving tumor region and c > 0, λ > 0. 
By the conservation of mass we have 

∆p − µ(σ − σ̃ ) = 0 in Ωt, (3.3) 

and the boundary conditions on 
t

!"  are 

  

! = ! ,

"

p = #$ ,

%p

%n
= &V

n
.

  (3.4)  

Two boundary conditions overdetermine the problem and 
allow one to find the free boundary position and velocity at 
time t. The initial conditions will be determined by meas-
urements from real ”data”. 

Sometimes one need to speed-up (superdiffusion) or 
slow-down (subdiffusion) the diffusion, it is possible with 
the help of so-called p-Laplacian  · (|u|p−2u), 1 < p < ∞ an 
value p < 2, p > 2 respectively or use some kind of nonlin-
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ear diffusion. Authors in [38] generalized the classical KS 
model in this fashion. 
Generalized Keller-Segel Model with Power Law Diffu-
sion: Tsallis Entropy 

Authors in [39, p. 256] consider a generalized class of 
models describing the chemotaxis of biological populations. 
In the simplest model, the diffusion coefficient and D and 
the mobility !  of the bacteria are constant. However, the 
original Keller-Segel model allows these coefficients to de-
pend on concentration of the bacteria and of the chemical. 
E.g. they mention equation (3.2) with u = ρ, f = ∇ · (χ ρ∇c), 
but with nonlinear operator D∇ρq instead of D∇ρ. It corre-
sponds to a power law diffusion D(ρ) = Dρq-1 and one can 
assume a constant mobility ! (x) = ! . This leads to the 
stochastic process, ordinary Ito-Langevin equation 

  

dr

dt
= !"c + 2D#

q$1

2 R(t)  

where R(t) is a white noise. Notice that constant diffusion 
D(ρ) = D leads to standard Keller-Segel model related to 
Boltzmann entropy. This model takes into consideration ef-
fects of non-ergodicity and nonextensitivity. It eventuates in 
a situation of anomalous diffusion (non-linear relationship to 

time). For   q ! 1 , the size of the random kicks is not uniform 
and a praticle which is in region with large ρ(r, t) will tend to 
have larger (smaller) kicks if q > 1 (q < 1). This leads to the 
fractal phase structure. The Tsallis entropy 

  

S(t) = !
1

q !1
("q ! ") dr#  

associated to equation (3.2) with a power law diffusion is the 
polynomial functional. In the case q = 2, the quadratic func-
tional gives the stationary solution, which possesses linear 
relationship between the density and the concentration. 
3.1.1. Numerical analysis of heat equation with p-
Laplacian 

Assume p ∈ (1, ∞), Ω ⊂ !
d , d ≥ 1 with a Lipschitz con-

tinuous boundary ∂Ω in the case d > 1. 
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 (3.7)  

where 
  
u

0
!V = W

0

1,p (")  and 
  
f !V *

= W
0

"1,p*

(#) . Define 

  A :V !V
*  as follows: for every v ∈ V ,  

  

( Au,v) = |!u |p"2 !u #!v dx
$
% .  (3.8)  

We say that u is a weak solution of (3.7) on [0, T ] if u ∈ 
Lp(0, T ; V ) solves the following weak problem : 

  

d

dt
u,v + ( Au,v) = f ,v ,

u(0),v = u
0
,v ,

 (3.9) 

for all v ∈ V , in the sense of distribution on [0, T ]. Suppose 
the following time discretizations. Let {ti}∞ be a uniform 
partition of !+  with ti = i ∆t for time step ∆t > 0. 
Author in [40] used the backward Euler scheme (recursive 
nonlinear elliptic problem): 

 
Fig. (1). Fig. 1(a)-1(f ). 
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Given f ∈ V ∗, u0 ∈ L2(Ω), find ui ∈ V , such that for all 
v ∈ V ,  
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 (3.10)  

where ui = ui(x), i = 1, 2, . . . . Further, let {tn,i}∞ be a uni-
form partition of !+  and tn,i = i ∆tn ,with time step ∆tn > 0. 
Let {un,i}∞ be the solution set defined by (3.10) with ∆t re-
placed by ∆tn. Define 

un(t) = t − tn,I ∆tn un,i+1 + tn,i+1 − t ∆tnun,i, tn,i < t 
< tn,i+1  (3.11) 

He gave a uniform convergence results in spaces L2(Ω) 
and V for un(t) → u in C (!+ ; ·) for the backward Euler 
scheme. They summarized some of the convergence and 
stability results also for the Crank-Nicholson scheme: 

  

u
i
! u

i!1

"t
,v + A

u
i
+ u

i!1

2
,v

#

$%
&

'(
= f ,v ,u

0
= u

0
(x),  (3.12) 

where ui = ui(x), i = 1, 2, . . . . 
A Semi-Discrete Finite Element Method 

For simplicity, we assume that Ω is convex with piece-
wise smooth boundary ∂Ω where d ≥ 1. Let Sh(Ω) be a 
regular conforming finite element space of V, where h is the 
maximum of the diameters of the elements of triangulation. 
Consider the following semidiscrete FEM scheme: Find uh  
Sh(Ω), such that for all vh ∈ Sh(Ω), 

  

du
h

dt
,v

h
+ ( Au

h
,v

h
) = f ,v

h
,( Au

h
(0),v

h
) = ( Au(0),v

h
).  (3.13) 

Denote {Uh,n}∞ as the backward Euler solution sequence 
for (3.13). He stated and proved their main result about uni-

form convergence of Uh ∈ C (!
+

; Sh(Ω)) to u ∈ C ( !
+

; V ) 
for t !+

" #{ }  as h → 0. 

4. CONCLUSIONS 

As we realized in the [41], the landmarks (points of ex-
tremal process) are hardly independent. The one possible 
dependence structure is pseudoexponential introduced in 
[42]. Therein we also proposed and motivated the fully pa-
rametric model of landmark dependency. Moreover, we de-
rive statistical methods for inference on its parameters. In 
particular we develop in this paper exact likelihood ratio test 
on scale (Hausdorff dimension in the case of fractal cancer 
model). We also develop a GOF test for pseudoexponential 
dependence versus independence. For future research it will 
be practical to provide an analytical tool for discrimination 
between cancer and healthy ranges of fractal dimensions of 
tissues. Beside that implementation of principles of tempera-
ture distribution modeling in software, e.g. Ansys, could be 
of practical use (see e.g.[43]).  

The authors aim only to present some interesting ideas 
how to model tumor growth pattern. As pointed by referee, 

the model overly simplifies the tumor dynamics and it is not 
clear which setting it can be applied to. Tumor growth rate 
can be affected by multiple microenvironment factors such 
as the growth factors. The tumor shape (boundaries) quanti-
fication also depends on how the shape is defined (by what 
type of image modality) and which smoothing technique is 
used. For example, the tumor shape from PET image is less 
clearly defined than the shape from CT imaging. More work 
will be needed to better understand dynamics of tumor 
growth. 
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