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Abstract: The usual domains for Cauchy distributions have been straight lines and unit circles. These domains are closed 

under arbitrary changes in location and scale, whether done sequentially or simultaneously. Such closure properties have 

been extended to spherical Cauchy distributions. Higher dimensional Cauchy based domains are created herein for unit 

hyperspheres and sets of straight lines of arbitrary dimension, and their Cauchy-like properties are determined and  

described. Cauchy distributions on these extended domains are shown to be closed under arbitrary transformations of  

location and scale, done singly or sequentially, but not generally closed when location and scale changes are done  

simultaneously. Stereographic projections are used to map the curved, finite surface of any hypersphere to a linear,  

infinite space of the same dimension as that of the hyperspherical surface. These mappings are one-one and onto, with no 

loss of information. These results show promise for uniting linear and directional mixtures of observations into a common 

domain linear or directional.  
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1. INTRODUCTION 

Let x1…xn be a rectangular coordinate system for an  ex-
tended Euclidean space En (n-space, for short). The "ex-
tended" feature means that the n-space has appended to it the 
single improper point . That is,  < xj   for j = 1-n. 
This results, as will be seen, in the ability to transform direc-
tional data back and forth between curved and linear spaces 
with the same dimensionality with no loss of information, 
via generalized stereographic projection.  

Row vectors are used for brevity: 0 = (0…0) is the n-
vector origin in En and x = (x1…xn) is a typical point of En. 
The equation (x-c)(x-c)

T
 = r

2 
defines a hypersphere En with 

center c = (c1…cn) and radius r.  

Our focus is on unit hyperspheres, where c = 0 and r = |x| 
=1. Our aim is to create and describe families of Cauchy-
based distributions on linear and spherical surfaces of arbi-
trary dimension.    

Hyperspheres are classified by the dimensionality, m, of 
their surfaces. A circle C has m = 1 but, as a courtesy, it is 
called a 1-sphere or S1. An ordinary sphere with 2-
dimensional surface area is a 2-sphere or S2 with m = 2, and 
a hypersphere with generic m-dimensional surface content is 
an m-sphere S or Sm.  

 An m-sphere needs at least m 1 dimensions to properly 
display itself and to provide the additional dimension needed 
for rectangular coordinates (Fig. 1). So, we put n = m + 1, 
and let n vary as m varies at will. Dimension n is not to be 
confused with the non-italicized north pole n of a sphere or 
hypersphere.  
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The default notation for a circle is C or S1, that for a d-
sphere is Sd when d is not m, and that for an m-sphere is S or 
Sm. 

Geographic terminology is used: to refer to the various 
hemispheres; to the equator and its equatorial m-space Em; to 
the north and south poles n = (10...0) and s = n; to the verti-
cal polar axis through the poles and coincident with the x1-
axis; to colatitude  (the angular deviation of a point x on an 
m-sphere from a special fixed point on the m-sphere); to the 
polar circles passing through the poles n and s, and their 
horizontal centerlines L passing through the origin.  

 The default notation for a single centerline is L or L1, 
that for a d-space of centerlines is Ld when d is not m, while 
that for an m-space of centerlines is L or Lm. This m-space is 
a subspace of En, and is therefore itself an extended Em. 

 

Fig. (1). Satellite orbiting a 2-sphere S2 in E3. A sensor at the center of S2 

can record the spatial direction to the satellite or to any other detectable 

object in 3-space by the rectangular or spherical coordinates of the point 

where the "line of sight" from the center of the sphere to the center of the 

satellite intersects S2. Directions in n-space may be recorded as the coordi-

nates of points on an m-sphere Sm in n-space (n = m+1). If the sphere were a 

1-sphere S1 in E3 instead of a 2-sphere the universe of detectable objects 

would be limited to those in the plane of S1. 
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 An m-sphere S generated by a sequence of rotations is 
created in 2. The sequence begins by rotating a circle in 2-
space into a sphere in 3-space, and ends with the generation 
of an m-sphere in n-space by rotation of an (m 1)-sphere. 
Section 3 defines and describes certain terms and probability 
distributions, and gives some details for transforming distri-
butions on m-sphere surfaces to and fro between rectangular 
x = (x1...xn) coordinates and angular or spherical coordinates 
a = (r a1...am).  

 Section 4 lays the groundwork for methodology to 
change back and forth between linear and directional do-
mains. Section 5 expands the methodology of  4 to perform 
sequential or simultaneous transformations in location and 
scale for Cauchy-based probability distributions on infinite 
linear and finite curved objects. Section 6 briefly discusses 
some potential applications of the methods proposed herein.  

2. CREATING M-SPHERES SM IN EN 

 Start with the unit circle S1 in the x1x2 2-space of En, with 
the vertical x1-axis as the polar axis through ± n, and the 
horizontal x2-axis as the centerline L1 for S1.  

 Imagine being in x1x2x3 3-space above S1, looking down 
on the north pole n. Picture S1 and its center line L1 rotating 
CCW (counter-clockwise) through an amount  about the 
polar axis, and out of the x1x2 2-space containing S1 into the 
3-space of x1x2x3. This rotation creates a unit 2-sphere S2 as a 
2-space surface of revolution that is a continuum of polar 
circles, and a continuum L2 of their centerlines.  

 Continue this process by rotating S2 and its continuum of 
centerlines CCW through the same amount  about the same 
polar axis but now out of the 3-space containing S2 and into 
the 4-space of x1x2x3x4, thereby generating a 3-sphere S3 and 
a 2-fold continuum L3 of centerlines. 

Continue this pattern, creating S4, S5 etc., and their associ-
ated continuums of centerlines, and finishing with the creation 
of Sm and an (m 1)-fold continuum L = Lm of centerlines.  

 The poles, ± n, of any m-sphere S are considered as fixed 
and immutable, with n at the top of the polar axis, s at the bot-
tom, and the polar axis orthogonal to the equatorial m-space Eq 
spanned by x2...xn. The m-space Lm spanned by all the centerli-
nes of S is the same space as the equatorial space Eq.  

3. CAUCHY M-SPHERE PARAMETERS 

3.1. Mean Direction μ and Rescaler  

 All Cauchy-based directional distributions dealt with 
herein have two parameters in addition to their dimension. 
These are the location parameter, μ

 scale parameter , called the rescaler. The 
points x and μ on an m-sphere S have the vector forms:  

x = (x1...xn), μ = (μ1...μn), with |x| = |μ| = 1. 

 The mean μ of a Cauchy m-sphere is the unit n-vector 
from the origin to the center of gravity, E(x), of the probabil-
ity distribution for x  Sm. This center of gravity is the origin, 
0, when the mean direction does not exist. We use the im-
proper value 0 for μ to represent this, and write  

) = μ, where 0    1,  μ μ  

The length  of E(x) is called the precision. It is shown 
later that a Cauchy sphere S is uniformly distributed if and 
only if the rescaler  = 1, in which case the precision  = 0, 
and μ = 0. By default   1 and  . However, if  = 0 or  
then  = 1, and x = μ with probability one.

 and  are related [1;   

( ) = |1 | (1+ ) = (1 ) for any   

This formula changes with m, becoming more compli-
cated for larger m, e.g.: when m = 2,  = coth   1⁄  where  
= exp ( )

3.2. Quick Definition of Sm Distribution 

 The m-sphere S is said to be Cauchy-based when the vari-

able part of its probability density function (also called the 

profile graph function, or pgf for short) has the form: pgf ( ) 

 (A  B cos )

S, or x, or  ~ Cm(μ. ) (1) 

; cos  = 
μ  μ is the mean direction for  

and  is  S, or x, or 
 is Cauchy μ,  When S has a uniform distribution we say 

S is Cauchy 0, 1, and write: S, or x, or   Cm(0,1).  

3.3. Transforming Coordinate Systems 

 The equations given in this section for transforming 
spherical to rectangular coordinates for points on m-spheres 
were adapted from [2]. They are used below to derive the 
Jacobian matrix J for the transformation. 

 Assume for the moment that the radius r of S is arbitrary. 
For brevity put sd = sin ad and cd = cos ad, for d = 1-m. The 
elements of x are given, in terms of those for the spherical 
coordinates in a = (r a1...am), by: 

x1 = r  c1; xd = r  s1s2…sd–1cd, for d = 2-m;  xn = r  
s1s2…sm–1sm.  

 Equations for expressing the spherical coordinates of a 
in terms of the rectangular coordinates of x are given in [2]. 
The angle am, given by am = 2 a cot q, where q = {(xm

2
+xn

2
)
1/2

 

+ xm)  For further 
details see [2]. 

3.4. Jacobian of the Transformation 

 The radius r of S is allowed to vary. S has a uniform dis-
tribution on its surface and rectangular coordinates x. The 
joint probability density function (pdf, for short) for x, when 
S  Cm(0,1), is: pdf (x) = a norming constant. The joint pdf 
(x) is to be transformed to the more tractable joint pdf (a) of 
the angular coordinates in a for S. The n n Jacobian matrix J 
of partial derivatives is defined by its row-column element 
k,d, or its column d, from 

J = (  xk/  ad), or J = ( x/ a0 x/ a1 … x/ am) (2) 

 The change of variables theorem [3] provides that the 
joint pdf(a) is related to the joint pdf (x) for all x, except the 
origin 0, by:  

 pdf (a) = pdf {x(a)} |det J,| (3) 



Linear and Directional Domains with Cauchy Probability Distributions The Open Statistics and Probability Journal, 2012, Volume 4    7 

where det J is found to be 

det J = a0
m

 sin
m-1

a1 sin
m-2

a2…sin
1
am-1 (4) 

 Now fix a0 = r = 1. Since the distribution on S is uni-
form, pdf{x(a)} is also just a norming constant, say N, and 
(3) can be expressed as 

pdf (a) = d ) = d ( d sin
m-d

ad), d = 1-m (5) 

with Nd a norming constant for ad and N = N1 
The m

th
 sine term of the second

 
product in (5) has disap-

peared since sin
m m

 am  1. Conclude from (5) that the m 
angles aj are jointly independent and uniformly distributed 
over their respective surfaces, which fixes the norming con-
stants Nd and N.  

3.5. Cauchy m-Sphere Distributions

An m-sphere S with a Cauchy distribution on its surface 
will be called a Cauchy m-sphere. It is defined by its prob-
ability density element (pde, for short), in (8) below. Let S be 
a Cauchy m-sphere with mean μ and rescaler , and put, as in 

 3.2: 

cos  = xμ
T

0    ; and x, μ  S, where  is the (6) colati-

tude.  

We say S or  or x is Cauchy μ, , and write:  

S ~ Cm(μ, ), or  ~ Cm(μ, ), or x (μ, ) (7) 

when the pde for the colatitude  has the form:  

pde ( ; μ, ) = Km(A  B cos )
-1 

sin
m-1

 d  (8)  

where A and B are functions of  and Km is a norming 
constant which is a function of m and :  

A = (
2
+1)/(2 ) > B = (

2
1)/(2 )  0 (9) 

Equations (6)-(8) show that the Cm (μ, ) distribution is 
completely described by that for the scalar colatitude . 
Formulae for integrating (8) to get Km can be found in [4].  

 The probability density function (pdf, for short) for  is 
just pde( ) without the d :  

pdf ( ; μ, ) = Km (A B cos )
-1

sin
m-1

, (10)  

and a profile graph function (pgf) for  is just pdf( ) without 
the sin

m-1
: 

pgf ( ; μ, )  (A B cos )
-1

 (11) 

 By (9) and (11) the Cm(μ, ) distribution degenerates to 
Cm(0, 1) if and only if the rescaler  is unity.  

 The pgf has the same form for all d-spheres, regardless 

of their surface dimensions or mean directions. A similar 

constancy of the pgf across different dimensions holds for 

the totality of Fisher-von Mises distributions [5], wherein pgf 
( ) = exp(  cos ).  

 Any function proportional to (11) also serves as a pgf for 

. Knowing m and the form of one of the pde, pdf or pgf 

functions of (8), (10) or (11), respectively, is equivalent to 
knowing all three forms.  

 Contours of equal pgf values are the parallel (m 1)-
spheres of latitude centered about the mean axis. These con-

tour values decrease monotonically from a maximum at the 
mode μ, where  = 0, to a midpoint when  = 2, to a 
minimum at μ, where  = . On the other hand the pdf val-
ues when m  2 are zero at  = 0, then climb rapidly, then 
decrease slowly to 0 again at  = . Thus the pgf gives a mo-
re realistic impression of the actual probability distribution. 
See [6] for a graphic example.  

 Each Cm(μ, ) distribution is isotropic about its mean 
axis, ± μ. Watson [7] has developed an array of statistical 
methods for analyzing data samples from isotropic direc-
tional distributions of arbitrary dimensions that is suitable for 
Cm(μ, ) distributions.  

 an interesting 
duality feature, namely: 

, S, x  Cm(μ, )   S, x  Cm( μ, 
1
) (12) 

 To see this, specify the argument of A as a function of  
or 

1
 by A( ) or A(

1
) and likewise for B, in (9). Then it is 

readily verified that A( )  B( ) xμ
T
 = A(

1
)  B(

1
) x( μ)

T
, 

and (12) follows.  

 Another interesting feature is that A+B =  and A B = 
1
 which, in conjunction with (11), can be used to find the 

ratio of the maximum pgf values to their corresponding 
minimum values for any Cauchy Cm(μ, ) distribution (the 
ratio is either 

2
 or 

2
 according as  > 1 or  < 1). This ratio 

is the same (
2
 or 

2
) for all dimensions m and any mean 

direction μ on Sd. The corresponding ratio for the family of 
Fisher-von Mises distributions is exp(2 ) for all dimensions 
and all mean directions (see [8] for relevant properties of the 
Fisher-von Mises distributions). 

4. STEREOGRAPHIC PROJECTION 

4.1. Rotating m-Spheres into Polar Positions  

 At times it is necessary to rotate μ to a polar mean posi-
tion ± n, which is the fixed position for an m-sphere S with 
the added proviso that μ = ± n, so that 

S  Cm(± n, ), say.  

±

 the n n orthogonal matrix 
Q given by  

Q
T
 = {(u+v)

T
(1+uv )

1
(u+v) In}u

T
 = v

T 
(13) 

where In is the n n identity matrix. The orthogonal matrix Q 
is symmetric and thus equal to its own inverse. It may, 
among other things, be used to rotate μ into or out of polar 
mean positions.  

 The poles, ± n, of any m-sphere S are considered as fixed 
and immutable, with n at the top of the polar axis, s at the bot-
tom, and the polar axis orthogonal to the equatorial m-space Eq 
spanned by x2...xn. It is necessary, before doing any projec-
tions, to ensure this positioning of the polar axis and the equa-
torial m-space Eq. It may also be necessary to rotate μ to n. 

4.2. Projective Mappings, Images, and Spaces 

 The equator of S is the unit (m 1)-sphere orthogonal to 
the polar axis of S. The equatorial m-space Eq of S is the set 
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of points y with the form (0 x2...xn) that are orthogonal to the 
polar x1-axis, the exact same set of points as the m-space L 
(or Lm) spanned by the centerlines of the polar circles of S. 
All these linear point sets are extended sets, with the single 
improper  point 

 All parallel lines of L are extended lines, and they all 
meet at infinity; indeed, all the lines of L are extended and 
meet at infinity. For more details about the improper point  
see [9-12]. 

In this section stereographic projection is extended be-
yond the usual 2- and 3-dimensional mappings between cir-
cles and lines, and spheres and planes. We use real n-vectors, 
x and y, on m-spheres S and on their centerline m-spaces L. 
We will construct a projective mapping PLS from S to L: L = 
PLS S, which projects the unit vectors x on S to the points y of 
L in a one-one and onto fashion: y = PLS x. Since this projec-
tive mapping must be one-one and onto, it implies the con-
sequent result that L = PLS S, with inverse mapping given by 
S = PSL L, say. In view of the above we may say that L and S 
(and x and y) are projective images of one another, and write: 

[L  S  L = PLS S] (y = PLS x and x = PSL y) (14) 

in a one-one and onto fashion, for all x in S and y in L. A 
more precise definition of "image" is this: 

 For the projective mapping y = PLS x and its implied re-
sult L = PLS S, the points x and y are called projective images 
(or images, for short) of one another, and we write: y  x, 
when x and y are collinear with the north pole n. If (n,x,y) 
are collinear then so are (n,y,x), so we may also write x  y.  

The fixed north pole n on S is called the projection point 
of the mapping, And the image relation is an equivalence 
relation, being reflexive, symmetric and transitive.  

 All points on S or L or En are row n-vectors. The m-
sphere S has definition S = {x: x = (x1...xn), |x| = 1)} (ext), 
and S = {a: a = (1,a1...am)} (int, because it is expressed in 
terms of its internal spherical coordinates a).  

 L has extrinsic definition: L = {y: y = (0x2...xn)} (ext) 
and intrinsic definition L = {y: y = (0y2...yn)} (int). The ex-
tended linear n-space is defined by En = {x: x = (x1...xn), 
< xj  } (int).  

 We proceed to derive the projective mapping PLS which 
maps every point x on the finite curved m-sphere S, in a one-
one and onto manner, to a point y on the infinite linear m-
space of L.  

4.3. A Projective Role for Cauchy Distributions 

 Any unit circle C can be stereographically projected to 
its extended centerline L by the one-one and onto mapping y 
= cot a 2, where y  L, x = (sin a, cos a)  C, and a is a 
suitably defined angular deviation of x from n. The value of 
y  ( , ] as x moves around the circle. This example is 
extended to bring linear and circular Cauchy distributions 
into the picture. Recall that a point y varying over a line L, 
and or L itself, are said to be linear Cauchy distributed, with 
median  and scale parameter the rescaler  over the center-
line L, and we write: y or L  L1( , ), when y has probabil-
ity density function 

pdf (y) = ( ) )⁄ } where  > 0 (15) 

 We say y or L is standard Cauchy and write: y or L ~ 
C1(0,1), when the median  is zero and the rescaler is unity. 
It is well-known that  

L  C  {L ~ L1(0,1)  C ~C1(0,1)] (16) 

 This states that if a projective mapping PLC exists be-
tween a unit circle C and its extended centerline L, then a 
uniform distribution on C induces a standard Cauchy distri-
bution on L, and conversely. Downs [1, 3.1] used the 
change of variables theorem to generalize (16) to 

L  C  [L ~L1(0, )  C ~ C1(μ , )] (17) 

where μ  = (s,0,n) according as  is (<1,=1,>1).  

 This is an interesting result. It states that, if L and C are 
images of one another as in (16), then rescaling L by  in-
duces a Cauchy μ ,  distribution on C, and vice versa, thus 
creating a non-uniform Cauchy distribution from scratch 
with (17) via an unadulterated line and circle in (16). We can 
even use (17) to create an arbitrary circular Cauchy μ,  from 
scratch by rotating μ  in (17) to μ  (13).  

 To extend these results, define the m-space L to be 
Cauchy ,  over an extended m-space L, and write: 

L  Lm( , ) when every line L in L is L1( , ).  

We claim now  and prove later a remarkable extension 
of (17): 

L  S  [L Lm(0, )  S  Cm(μ , )] (18) 

This result enables us to convert an infinite linear m-
space L to a finite curved m-space S, and conversely, for any 
positive integer m. However, we must first prove the antece-
dent that S and L are projective images: S  L. We proceed 
to do just that.  

 We seek a projective mapping PLS which sends every 
point x of an m-sphere S to a point y in an m-space L in a 
one-one and onto manner, so (14) is satisfied and L and S are 
indeed projective images of one another. First, simplify the 
complicated m-spaces of L and S to 1-spaces L and C using 

 

Fig. (2). Planar Cross-Section of the m-sphere S and centerline m-space L 

for the Projective Mapping y = PLS x. The cross-section of the m-sphere S is 

the unit circle C, and the cross section of the m-space L is the horizontal 

centerline L. The three points n, x, y in Fig. 2 are collinear, so x = (x1...xn) 

(ext) and y = (0y2...yn) (int) are images, and we write: x  y.  
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the fact that all the action stems from the three special points 

n, s, x on the surfaces of S and the unit circle C (Fig. 2).  

The three special points are the poles n and s of S and C, 
and a randomly selected non-polar point x on S. These spe-
cial points fix the plane containing C, and serve to define C 
as the unique polar circle cross-section of S which contains 
x. The centerline L of C is the corresponding cross-section of 
L. The point x on S has unit length and so must be on C. To 
construct C draw a vertical polar axis for S and for C two 
units in length. Label the top, middle and bottom points as n, 
0 and s (north pole, origin, and south pole), thus determining 
C (Fig. 2). The m-sphere S has been reduced to the cross-
section of S containing the four points n, s, x and y. The 
equatorial m-space Eq = Lm has been reduced to the center-
line L of C.  

The perpendicular projections of x onto the polar axis ± n 
and the line L yield the auxiliary points x' and y' respectively. 
From the rectangle with vertices 0, x', x, y' we get x = x' + y', 
or (x1...xn) (ext) = (x10...0) (ext) + (0x2...xn) (ext). Note that x1 
< 0 since x is below L, and that y  y ' || x  x'. As x varies 
over S, the circle C and its image line L change correspond-
ingly. The points y of each centerline are mapped one-one 
and onto the points x of its corresponding polar circle, thanks 
to the extension to  of the lines of L. 

If x lies above L then so does x', and x is then between n 
and y, with y still on L but outside of C. But the fundamental 
structure of the point configuration of Fig. (2) remains intact. 
Analogous configurations occur when x is to the left of the 
polar axis. 

Some features of the mapping PLS become apparent. The 
north pole n is mapped to the improper point  of L, and the 
south pole s to the origin 0. The equator of S is mapped to 
itself. Since Eq is orthogonal to the polar axis of Sm then 
every line L through 0 in Eqm must be orthogonal to the polar 
axis.  

The mapping y = PLS x sends the point x on the finite m-
dimensional curved surface of S to the point y on the infinite 
m-dimensional linear space L, and conversely for PSL. The 
point x = (x1...xn) on Sm is restricted by xx

T
 = 1, but its image 

point y = (0y2...yn) on Eq is unrestricted. The first coordinate 
y1 of y is always 0 for all x.  

We seek an extrinsic form for y as a function of x. To this 
end we derive the mappings PSL and PLS to prove their exis-
tence. For PLS this is done by expressing each element of y as 
a function of the elements of x, and conversely for PSL. We 
show, with heavy reliance on Fig. (2), that: 

y = (0y1...yn) (int) = PLS x = y'/(1-x1) (ext) (19)  

where y' = (0x2...xn). Note the equation x1 = 0 is an extrinsic 
definition of the equatorial m-space L = Eq.  

To show (19) observe that the right triangles with hy-
potenuses through the points (n,y) and (n,x) are similar, so 
|y| |n| = |x x'| (|n|+|x'|), which is the same as |y| 1 = 
|y'| (1 x1) (because x1 is negative), and this is the same as 
|y| |y'| = 1/(1 x1). The points x, y and y' are always on the 
same side of the polar axis, implying that y and y' are always 
parallel with the same sense (both east of 0 in Fig. 2), imply-
ing equality of the unit n-vectors: y |y| and y' |y'|. Since 

|y| |y'| = 1 (1 x1), we infer that y = y'  |y| |y'| = y' (1 x1), 
which proves (19). Observe that (19) is valid regardless of 
the quadrant in which x lies on C.  

The final step is to find, for each image pair (x,y), an ex-
trinsic representation of x in terms of intrinsic elements of y 
for the inverse mapping PSL. Let the point y = (0y2...yn)  Lm 
be assigned. We must find  

x (ext) = PSL y, where y = (0y2...yn) (int). 

Assume the reasonable conjecture that the form for x = 
PSL y when n = 3 is the same as that when n is arbitrary. If n 
is 3 the known form (see [9]) is: 

x = PSL y = (q
2

1 2y2 2y3) (q
2 

+ 1), and q
2
 = y2

2 
+ y3

2
.  

For arbitrary n, the form is: 

x = PSL y = (q
2

1 2y2...2yn) (q
2
 + 1), q

2
 = yj

2 
(20) 

where the sum is for j = 2-n. Initially test the conjecture 
by checking that |x|

2
 =1. By (20)  

xx
T
 = {(q

2
1)

2
 + 4y2

2
 +...+ 4yn

2
)} (q

2
 + 1)

2
.  

The numerator of this is (q
2

1)
2
+4q

2 
= q

4
2q

2
+1+4q

2
 

which is (q
2
+1)

2
, the denominator. The quick initial test is 

met. The decisive test is: does PSLPLS x = x? Since x' = (0 
x2…xn), then  

y = Pyx x = y' (1 x1) (ext) = (0x2…xn) (1 x1) (ext) by 
(19). By the conjecture (20) we have:  

x = PSL y = (x1…xn) = (q
2
-1 2y2…2yn)⁄(q

2
+1) (21) 

with q
2 

= y2
2
+…+yn

2
, implying  

x1 = (q
2
-1)⁄(q

2
+1), and yj = xj⁄(1-x1) for j = 1-n.  

Solve the equation x1 = (q
2
-1)⁄(q

2
+1) for q

2 
and get  

q
2
 = (1+x1)⁄(1-x1), so q

2
+1 = 2⁄(1-x1), and, by (21) 

2yj (q
2
+1) = {2xj (1-x1)} {(1-x1) 2}= xj, (22) 

for j= 2-n, confirming that x = PSLPLS x and completing 
the proof that the m-spaces S and L are projective images of 
one another. This satisfies the antecedent condition in (18) 
that S  L, and sets the stage for proving (18). 

4.4. Proof of L S  [L (0, ) S Cm(μ , )] 

We must prove L (0, )  S Cm(μ , ), given that 
L S. First assume that L  S and S Cm(μ , ). We must 
prove that L (0, ):  

Proof: The set of centerlines L in L span L; the set of po-
lar circles C in S span S; every L in L has a unique polar cir-
cle C in S: the lines and circles are paired off as (L,C); and 
the continuum of (L,C) pairs span the pair of m-spaces (L,S).  

Since S ~ Cm(μ , ) for all pairs (L,C) the Cs must be iden-
tically distributed as C1(μ , ) with identical mean (s,0, or n) by 
(11). Then the corresponding Ls for the Cs are identically dis-
tributed as L1(0, ) by (17), and L is Lm(0, ) by definition.  

Assume L ~ Lm(0, ). We now show S Cm(μ , ):  

Proof: The centerlines L of L are identically distributed 
as L1(0, ) by definition of Lm(0, ). Then, by (17), C~C1(μ , 
) for every polar circle C on S. This implies the m-sphere S 
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has profile generating function pgf (S)  (A B xμ
T
) where x 

 S, implying by (11) and the discussion following it that S
Cm(μ , ). This completes the proof of (18). 

 There are two fixed points for Sm and two for Lm in every 
stereo-projective mapping between them: the fixed points for 
Sm are the poles n and s on Sm, and their respective images 
are the fixed points  and 0 of Lm, since these fixed points 
are inviolate and cannot be changed.  

 The crucial role of  in this process legitimizes and so-
lidifies the conclusions that the projective mapping from the 
curved surface of Sm to the linear surface of Lm is indeed a 
one-one and onto mapping.  

5. TRANSFORMATIONS 

 Changing μ to μ', say, is done by rotating μ
T 

to μ'
T
. 

Changes in scale from  to ' are done by rescaling the coor-
dinate axes from  to 1, then from 1 to ', or by simply 
rescaling the x2...xn coordinate axes by ( '⁄ ). A variety of 
transformations can be achieved by deft manipulation of 
(16)-(18).  

 Circular Cauchy distributions are amenable to sequences 
of simultaneous transformations of location and scale pa-
rameters because a special class of complex-valued M bius 
transformations form a subgroup under composition of trans-
formations. This subgroup is composed of Cauchy circle 
mappings from one planar unit circle to itself or to another 
unit circle, with the resulting circular Cauchy distributions 
having transformed parameters. For further details using 
complex variables see [1;  2, 3.4].  

 The spherical Cauchy distributions are closed under all 
M bius transformations, with results analogous to those for 
circular Cauchy distributions. For further details (in a com-
plex plane setting) see [1;  2, 4, 4.8]. 

 The evidence is mounting that a family of spherical dis-
tributions is closed under M ibus transformations if and 
only if that family is Cauchy based.  

 Analogous evidence has accumulated for circular 
Cauchy distributions when the M bius mappings are con-
fined to the subgroup of circle mappings. See [1,  2 & 4] for 
more details. 

6. DISCUSSION 

The techniques of pattern recognition and image analysis 
are heavily dependent on sophisticated statistical methods, 
large databases and extensive computations. Bahlmann [13] 
has pointed out situations where directional and linear data 
concurrently appear in these fields but where there is no in-
tegrated body of statistical techniques that provide an inte-
grated solution to this problem of disparate data domains. 
The family of Fisher-von Mises distributions has been ex-
tended from domains of observations of vectors on m-

spheres, to domains where the observations are rigid con-
figurations of p distinguishable directions in n-space, p  n 
[14]. He applied this successfully to analyses of the orienta-
tions of spatial QRS loops observed from clinical vectorcar-
diograms, each with 2 vectors in 3-space (p = 2, n = 3). 
These methods show promise for application in such areas as 
pattern recognition and image analysis that possess endless 
varieties of shapes and configurations.  

The Cauchy families abound in hyperspherical and linear 
domains, and Cauchy objects in either of these domains can 
be simply transformed to Cauchy objects in the other do-
main, thus eliminating the problem of disparate data do-
mains. All Cauchy-based objects in either domain are ame-
nable to changes in location and scalar parameters. 
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