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Abstract: For the analysis of square contingency tables with ordered categories, some models that the log odds for two 

symmetric cell probabilities is a linear function of the row and column values have been considered. This paper proposes 

a generalization of these models. This paper also proposes the model that the weighted sum of the probability that an 

observation will fall in one of the cells in upper right triangle of the table is equal to the weighted sum of the probability 

that it falls in one of the cells in lower left triangle of the table. In addition, this paper gives the theorem that the symmetry 

model is equivalent to both the proposed models holding simultaneously. Moreover, this paper shows that the likelihood 

ratio statistic for testing goodness-of-fit of the symmetry model is asymptotically equivalent to the sum of those for testing 

the proposed models. Examples are given. 
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1. INTRODUCTION 

Consider an r r  square contingency table with the 

same row and column classifications. Let pij  denote the 

probability that an observation will fall in the i th row and 

j th column of the table 
 
(i = 1,L,r; j = 1,L,r) . The 

symmetry (S) model (Bowker [1]) is defined by  

 
pij = ij    (i = 1,L,r; j = 1,L,r),  

where ij = ji  and { ij}  are unspecified (also see Bishop, 

Fienberg and Holland [2], p. 282). This model is also 

expressed as  

pij = pji (i /= j).  

This model states that the probability that an observation 

will fall in the (i, j) th cell, i /= j , is equal to the probability 

that it falls in the symmetric ( j, i) th cell. 

 Some extensions of the S model have been considered. 

The conditional symmetry (CS) model (McCullagh [3]) is 

defined by  

pij =
ij (i < j),

ij (i j),
 

where ij = ji  and { ij}  are unspecified. This model may 

be expressed as  
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pij
p ji
= (i < j).  

Let X  and Y  denote the row and column variables, 

respectively. The CS model indicates the symmetry of the 

conditional probabilities such that P(X = i,Y = j | X < Y )  

equals P(X = j,Y = i | X > Y )  (i < j) . A special case of this 

model obtained by putting =1  is the S model.  

The linear diagonals-parameter symmetry (LDPS) model 

(Agresti [4]) is defined by  

pij =
j i

ij (i < j),

ij (i j),
 

where ij = ji  and { ij}  are unspecified. This model 

indicates that the probability that an observation will fall in 

the (i, j) th cell, i < j , is j i  times higher than the 

probability that it falls in the ( j, i) th cell. A special case of 

this model obtained by putting =1  is the S model. 

 The linear column-parameter symmetry (LCPS) model 

(Tomizawa, Miyamoto and Iwamoto [5]) is defined by  

pij =
j 1

ij (i < j),

ij (i j),
 

where ij = ji  and { ij}  are unspecified. This model 

indicates that the log odds, log(pij / pji )  is a linear function 

of the column value j . A special case of this model obtained 

by putting =1  is the S model. 



2    The Open Statistics & Probability Journal, 2011, Volume 3 Kurakami et al. 

The CS, LDPS and LCPS models have the structure that 

the log odds, log(pij / pji )  is a linear function of the row and 

column values. We are now interested in a generalization of 

these models. 

For square contingency tables, some statisticians gave 
decompositions of the S model into some models. The 
orthogonal decompositions, which mean that the test statistic 
for a model is (asymptotically) equivalent to the sum of 
those for decomposed models, have been proposed, see, e.g., 
Read [6], Tomizawa and Tahata [7] and Tahata, Yamamoto 
and Tomizawa [8]. We are also interested in the orthogonal 
decomposition of the S model using the generalized model. 

The purpose of this paper is (i) to propose the generalized 
exponential symmetry (GES) model, which indicates that the 
log odds for two symmetric cell probabilities is an arbitrary 
function of the row and column values, (ii) to give the 
decomposition of the S model using the GES model, and (iii) 
to show that the test statistic for the S model is 
asymptotically equivalent to the sum of those for 
decomposed models. Section 2 proposes the GES model, and 
gives the decomposition of the S model. Section 3 shows the 
orthogonality of the decomposition with respect to the 
goodness-of-fit test statistic. Section 4 gives examples. 

2. MODELS AND DECOMPOSITION  

For an r r  square contingency table with ordered 
categories, we consider the following model:  

pij =

wij
ij (i < j),

ij (i j),
                        (1) 

where ij = ji , { ij}  are unspecified and {wij}  are the 

specified nonnegative values. This indicates that the 

probability that an observation will fall in the (i, j) th cell, 

i < j , is 
wij  times higher than the probability that it falls in 

the ( j, i) th cell. A special case of this model obtained by 

putting =1  is the S model. When {wij =1} , {wij = j i}  

and {wij = j 1} , this model is equivalent to the CS, LDPS 

and LCPS models, respectively. So, we shall refer to model 

(1) as the generalized exponential symmetry (GES) model.  

Next, consider the following model:  

i=1

r 1

j=i+1

r

wij pij =
j=1

r 1

i= j+1

r

wij pij ,                             (2) 

where wij = wji , i < j , and {wij}  are the specified 

nonnegative values. This model indicates that the weighted 

sum of the probability that an observation will fall in one of 

the cells in upper right triangle of the table is equal to the 

weighted sum of the probability that it falls in one of the 

cells in lower left triangle of the table. We shall refer to 

model (2) as the generalized weighted global symmetry 

(GWGS) model. When {wij =1} , this model is identical to 

Read's [6] global symmetry (GS) model, and when 

{wij = j i} , i < j , this model indicates the marginal mean 

equality (ME), i.e., E(X) = E(Y ) . Also, when {wij = j 1} , 

i < j , model (2) indicates  

i=1

r 1

j=i+1

r

( j 1)pij =
j=1

r 1

i= j+1

r

(i 1)pij .                      (3) 

We shall refer to model (3) as the weighted global 
symmetry (WGS) model. 

Then, we can obtain the decomposition of the S model as 
follows: 

Theorem 1 :  The S model holds if and only if the GES 
and GWGS models hold. 

Proof : If the S model holds, then the GES and GWGS 
models hold. Assuming that both the GES and GWGS 
models hold, then we shall show that the S model holds. 

From the assumption, we see  

i=1

r 1

j=i+1

r

wij

wij
ij =

i=1

r 1

j=i+1

r

wij ij .  

Therefore, we obtain =1 . Namely, the S model holds. 
The proof is completed. 

3. ORTHOGONALITY OF THE DECOMPOSITION 

Let nij  denote the observed frequency in the (i, j) th cell 

of the table 
 
(i =1,L,r; j =1,L,r) . Assume that a 

multinomial distribution is applied to the r r  table. The 

maximum likelihood estimates (MLEs) of expected 

frequencies under the GES and GWGS models could be 

obtained by using the iterative procedures, for example, the 

general iterative procedure for log-linear model of Darroch 

and Ratcliff [9] or using the Newton-Raphson method to the 

log-likelihood equation. Each model can be tested for 

goodness-of-fit by, e.g., the likelihood ratio chi-square 

statistic with the corresponding degrees of freedom (df). The 

likelihood ratio statistic for testing goodness-of-fit of model 

M  is given by  

G2 (M ) = 2
i=1

r

j=1

r

nij log
nij
m̂ij

,  

where m̂ij  is the MLE of expected frequency mij  under 

model M . 

For the analysis of contingency tables, Lang and Agresti 

[10] and Lang [11] considered the simultaneous modeling of 

the joint distribution and of the marginal distribution. 

Aitchison [12] discussed the asymptotic separability, which 

is equivalent to the orthogonality in Read [6] and the 

independence in Darroch and Silvey [13], of test statistic for 

the goodness-of-fit of two models (also see Lang and Agresti 

[10]; Lang [11]; Tomizawa and Tahata [7]; Tahata and 

Tomizawa [14]). 

For the r r  table, we shall consider the orthogonality 

(i.e., separability or independence) of test statistic for the 
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decomposition of the S model into the GES and GWGS 

models. 

Theorem 2: For an r r  table, the following asymptotic 

equivalence holds:  

G
2 

(S) ~ G
2
 (GES) + G

2
 (GWGS), 

Where“~” means that the difference between the left-hand 

side and right-hand side converges in probability to zero. 

Proof: For an r r  square table, the GES model may be 

expressed as  

log pij =

wij 0 + ij (i < j),

ii (i = j),

wij 0 + ij (i > j),

                                      (4) 

where wij = wji  and ij = ji . Let  

 
p = (p11,L, p1r , p21,L, p2r ,L, pr1,L, prr )

' ,  

= ( 0 , 1
' )' ,  

 where ` '̀"  denotes the transpose, and where  

 
1 = ( 11, 12 ,L, 1r , 22 ,L, 2r ,L, r 1,r 1, r 1,r , rr )

' ,  

is the r(r +1) / 2 1  vector. Then the GES model is 

expressed as  

log p = X = (X0 ,X1 ) ,  

where X  is the r2 K  matrix with K = (r2 + r + 2) / 2 , and 

X0  is the r2 1  vector with  

 
X0 = (x11,L, x1r , x21,L, x2r ,L, xr1,L, xrr )

' ,  

where  

xij =

wij (i < j),

0 (i = j),

wij (i > j),

 

with wij = wji , and X1  is r2 r(r +1) / 2  matrix of 0 or 1 

elements determined from (4). Note that the matrix X  is full 

column rank which is K . In a similar manner to Haber [15], 

Lang and Agresti [10], we denote the linear space spanned 

by the columns of the matrix X  by S(X)  with the 

dimension K . Note that X11r (r+1)/2 =1r2  where 1t  is the 

t 1  vector of 1 elements, thus 1
r2

S(X) . Let U  be an 

r2 d1 , where d1 = r
2 K = (r 2)(r +1) / 2 , full column 

rank matrix such that the linear space spanned by the column 

of U , i.e., S(U ) , is the orthogonal complement of the space 

S(X) . Thus, U'X =Od1,K
, where Ost  is the s t  zero 

matrix. Therefore the GES model is expressed as  

h1(p) = 0d1 ,  

where 0d1  is the d1 1  zero vector, and  

h1(p) =U
' log p.  

The GWGS model may be expressed as  

h2 (p) = 0d2 ,  

where d2 =1 ,  

h2 (p) = X0
' p.  

Note that X0
' U = 0d1

'
. From Theorem 1, the S model may be 

expressed as  

h3(p) = 0d3 ,  

where d3 = d1 + d2 = r(r 1) / 2 ,  

h3 = (h1
' ,h2

' )' .  

Note that hs (p), s =1,2, 3,  are the vectors of order 

ds 1 , and ds , s =1,2, 3,  are the numbers of df for testing 

goodness-of-fit of the GES, GWGS and S models, 

respectively. 

Let Hs (p), s =1,2, 3,  denote the ds r2  matrix of partial 

derivatives of hs (p)  with respect to p , i.e., 

Hs (p) = hs (p) / p
'
. Let (p) = diag(p) pp' , where 

diag(p)  denotes a diagonal matrix with i th component of 

p  as i th diagonal component. We see that  

H1(p)p =U
'1
r2
= 0d1 ,  

H1(p)diag(p) =U
' ,  

H 2 (p) = X0
' .  

Therefore we obtain  

H1(p) (p)H 2 (p)
' =U'X0 = 0d1.  

Thus we obtain 3 = 1 + 2 , where  

s = hs (p)
'[Hs (p) (p)Hs (p)

' ] 1hs (p).  

From the asymptotic equivalence of the Wald statistic 

and the likelihood ratio statistic (Rao [16], Sec. 6e. 3; 

Darroch and Silvey [13]; Aitchison [12]), we obtain 

Theorem 2. The proof is completed. 

Note that for the r r  table, Read [6] shows 

G2 (S) =G2 (CS)+G2 (GS) , and Tahata et al. [8] shows 

G
2
(S) ~ G

2
 (LDPS) + G

2
 (ME). Theorem 2 is a 

generalization of these orthogonal decompositions. 

A quick method for choosing the best-fitting model 

among different models is to use Akaike's [17] information 

criterion (AIC), which is defined as  
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AIC = 2(maximum log likelihood)+ 2(number of parameters),

 

for each model. For details see Konishi and Kitagawa [18]. 

This criterion gives the best-fitting model as the one with 

minimum AIC. Since only the difference between AICs is 

required when two models are compared, it is possible to 

ignore a common constant of AIC and we may use a 

modified AIC defined as  

AIC+ =G2 2(number of df).  

Thus, for the data, the model with the minimum AIC
+

 
(i.e., the minimum AIC) is the best-fitting model. This 
criterion will be used in the next section. 

4. EXAMPLES 

Example 1: Consider the data in Table 1, taken from 

Tomizawa et al. [5]. These are decayed teeth data of 363 

women with lower and upper teeth in Sapporo, Japan. Each 

category means (1): 0-4 decayed teeth, (2): 5-8 decayed teeth 

and (3): above 9 decayed teeth. Table 4 gives the likelihood 

ratio chi-square statistic for each model. From Table 4a, we 

see that the LCPS model fits the data in Table 1 very well, 

and the others fit poorly. In addition, the LCPS model has a 

minimum AIC
+

 value. Therefore when we use AIC 

criterion, the LCPS model is the best-fitting model among 

the models. From Theorem 1, we can see that the poor fit of 

the S model is caused by the influence of the poor fit of the 

WGS model rather than the LCPS model. Under the LCPS 

model, the MLE of log  with asymptotic standard error 

given in parenthesis is log ˆ =1.184  (a.s.e. = 0.150) and the 

MLE of  is ˆ = 3.268 . Since ˆ > 1 , we can estimate that 

P(X < Y ) > P(X > Y ) , that is, the number of a woman's 

upper decayed teeth tends to be more than that of her lower 

decayed teeth. 

Example 2: Consider the data in Table 2, taken directly 

from Miller [19]. These are occupational mobility data for 

father-son pairs in Melbourne, Australia. Each category 

means (1): Employer and self-employed, (2): White collar, 

(3): Skilled and (4): Semi-skilled. From Table 4b, we see 

Table 1. Decayed Teeth Data of 363 Women with Lower and Upper Teeth in Sapporo, Japan; from Tomizawa et al. [5]. The 

Parenthesized Values are the Maximum Likelihood Estimates of Expected Frequencies Under the LCPS Model 

Lower   Upper   Total 

   (1)   (2)   (3)    

 (1)   97   62   15   174  

  (97.00)   (62.79)   (15.54)    

(2)   20   63   75   158  

  (19.21)   (63.00)   (74.06)    

(3)   2   6   23   31  

  (1.46)   (6.94)   (23.00)    

 Total   119   131   113   363 

 

Table 2. Occupational Status for Father-Son Pairs in Melbourne, Australia; from Miller [19]. The Parenthesized Values are the 

Maximum Likelihood Estimates of Expected Frequencies Under the WGS Model 

Father's Status  Son's Status  Total 

  (1)  (2)  (3)  (4)   

 (1)   16   11   11   7   45  

  (16.00)   (10.24)   (9.59)   (5.73)    

(2)   5   10   3   4   22  

  (5.40)   (10.00)   (2.61)   (3.28)    

(3)   2   2   10   6   20  

  (2.35)   (2.35)   (10.00)   (4.91)    

(4)   0   9   7   18   34  

  (0.00)   (11.55)   (8.99)   (18.00)    

 Total   23   32   31   35   121  
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that the WGS model fits the data in Table 2 well, and the 

others fit poorly. Also, the WGS model has a minimum 

AIC
+

 value. Thus, when we use AIC criterion, the WGS 

model is the best-fitting model among the models. From 

Theorem 1, we can see that the poor fit of the S model is 

caused by the influence of the poor fit of the LCPS model 

rather than the WGS model. Since the WGS model fits well, 

we can estimate that the weighted sum of the probability that 

a father's status is i  and his son's status is j (> i)  is equal to 

the weighted sum of the probability that the father's status is 

j  and his son's status is i .  

Example 3: Consider the data in Table 3, taken directly 

from Miller [19]. These are occupational mobility data for 

father-son pairs in Norway. Each category means (1): Non-

manual, (2): Working-class, (3): Primary workers and (4): 

Primary independent. From Table 4c, we see that the LDPS 

model fits the data in Table 3 well, and the others fit poorly. 

In addition, the LDPS model has a minimum AIC
+

 value. 

Therefore when we use AIC criterion, the LDPS model is the 

best-fitting model among the models. From Theorem 1, the 

poor fit of the S model is caused by the influence of the poor 

fit of the ME model rather than the LDPS model. Under the 

LDPS model, the MLE of log  is log ˆ = 0.646  (a.s.e. = 

0.075) and the MLE of  is ˆ = 0.524 . Since ˆ < 1 , we can 

estimate that P(X < Y ) < P(X > Y ) , namely, a father's 

occupational status category tends to be greater than his son's 

status category. 

5. CONCLUDING REMARKS 

In this paper, we have proposed a generalized model 
including the S, CS, LDPS and LCPS models and also 
introduced a generalized model including the GS and ME 
models. In addition, we have given the decomposition of the 
S model and shown the orthogonality of test statistic. 

We point out from Theorem 2 that for instance, the 

likelihood ratio statistic for testing goodness-of-fit of the S 

model assuming that the GES model holds true is 

G2 (S) G2 (GES)  and this is asymptotically equivalent to 

the likelihood ratio statistic for testing goodness-of-fit of the 

GWGS model, i.e., G2 (GWGS) . 

 

Table 4. Likelihood Ratio Values  G
2

 and AIC
+

 Values for Each Model Applied to the Data in Tables 1, 2, and 3. The Parenthesized 

Values are the Number of Parameters for Each Model 

(a) For Table 1  

 

Models df G2
 p -value AIC

+
 

 S   3 (5)   103.33   < 0.001    97.33 

CS   2 (6)   9.40   0.009   5.40 

GS   1 (7)   93.93   < 0.001    91.93 

LDPS   2 (6)   11.05   0.004   7.05 

ME   1 (7)   81.20   < 0.001    79.20 

LCPS   2 (6)   0.39   0.823   3.61 

WGS   1 (7)   102.16   < 0.001    100.16 

Table 3. Occupational Status for Father-Son Pairs in Norway; from Miller [19]. The Parenthesized Values are the Maximum 

Likelihood Estimates of Expected Frequencies Under the LDPS Model 

Father's Status  Son's Status  Total 

   (1)   (2)   (3)   (4)    

 (1)   95   41   1   10   147  

  (95.00)   (36.81)   (3.24)   (8.95)    

(2)   66   160   14   16   256  

  (70.19)   (160.00)   (17.20)   (18.12)    

(3)   14   36   20   19   89  

  (11.76)   (32.80)   (20.00)   (14.45)    

(4)   61   68   23   97   249  

  (62.05)   (65.88)   (27.55)   (97.00)    

 Total   236   305   58   142   741  
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Table 4. contd… 

(b) For Table 2  

 

Models  df  G2
 

 
p -value  AIC

+
  

 S   6 (9)   21.12   0.002   9.12 

CS   5 (10)   16.76   0.005   6.76 

GS   1 (14)   4.36   0.037   2.36 

LDPS   5 (10)   14.86   0.011   4.86 

ME   1 (14)   6.52   0.011   4.52 

LCPS   5 (10)   18.92   0.002   8.92 

WGS   1 (14)   2.17   0.141   0.17 

(c) For Table 3  

 

Models  df G2
 p -value  AIC

+
 

 S   6 (9)   105.09   < 0.001    93.09 

CS   5 (10)   26.70   < 0.001    16.70 

GS   1 (14)   78.40   < 0.001    76.40 

LDPS   5 (10)   6.74   0.241   3.26 

ME   1 (14)   96.99   < 0.001    94.99 

LCPS   5 (10)   19.61   0.001   9.61 

WGS   1 (14)   84.73   < 0.001    82.73 
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