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Abstract:
Objective:
We studied the consistency of the semi-parametric maximum likelihood estimator (SMLE) under the Cox regression model with right-censored
(RC) data.

Methods:
Consistency proofs of the MLE are often based on the Shannon-Kolmogorov inequality, which requires finite E(lnL), where L is the likelihood
function.

Results:
The results of this study show that one property of the semi-parametric MLE (SMLE) is established.

Conclusion:
Under the Cox model with RC data, E(lnL) may not exist. We used the Kullback-Leibler information inequality in our proof.
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1. INTRODUCTION

We  studied  the  consistency  of  the  semi-parametric
maximum likelihood estimator (SMLE) under the Cox model
with right-censored (RC) data.

Let  Y  be  a  random  survival  time,  X  a  p-dimensional
random covariate.  Conditional on X  = x,  Y satisfies the Cox
model if its hazard function satisfies

(1.1)

where ho is the baseline hazard function, i.e., ho (y) = fo (y)
/So (y-), fo is a density function, So (y) = S(y|0) P (Y > y |X =

), Fo = 1 - So, τY = sup{t:SY(t) > 0}, h(y|x) = , S(·|·) f(·|·)
orF(·|·)) is the conditional survival function (density function
(df) or cumulative distribution function (cdf)) of Y given X = x.
The restriction y<τY is not in the original definition of the PH
model, but is necessary if So is discontinuous at τY (see Remark
1 [1])
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2. METHODS

In  this  paper,  we  shall  make  use  of  the  assumptions  as
follows:

AS1. Suppose that C is a random variable with the df fC (t)
and the survival function SC  (t), X  takes at least p  +1 values,
say 0 , x1, ..., xp, where x1, ..., xp are linearly independent, (Y,X)
and  C  are  independent.  Let  (Y1,X1,C1),  ...,  (Yn,Xn,Cn)  be  i.i.d.
random vectors from (Y,X,C). M = min(Y,C) and δ = 1(Y ≤ C),
where  1(A)  is  the  indicator  function of  the  event  A.  Let  (M1,
δ1X1), ..., (Mn, δn, Xn) be i.i.d. RC observations from (M, δ, X)
with the df are as follows:

(1.2)

and S(t|x) is a function of (So, β) (see Eq. (1.1)), but not fx

and fC (the df’s of X and C).

Due  to  (AS1)  and  Eq.  (1.2),  the  generalized  likelihood

h(y|x) = ho (y) eβ'x,   𝑦 < 𝜏𝑌,                                                  

≝
𝑓 (𝑦|𝐱)

𝑆(𝑦−|𝐱)
, 

    𝑓𝑀,𝛿,𝑋(𝑚, 𝛿, 𝐱) = (𝑆(𝑚|𝐱)fc(m))
1−𝛿

(𝑓(𝑚|𝐱)Sc(m))𝛿𝑓𝐗(𝐱) , 

   where 𝑚 ∈D

 D  = {
(−∞, 𝜏𝑀] 𝑖𝑓 𝑃(𝑌 = 𝜏𝑀|𝑋 = 0) = 0 𝑜𝑟 𝑃(𝐶 ≥ 𝜏𝑀) > 0
(−∞, 𝜏𝑀) otherwise,

 

𝜏𝑀 = sup{𝑥:  𝑆𝑀(𝑥) > 0} , 𝑆0(𝜏𝑀) < 1,                                            
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function can be written as:

(1.3)

which coincides with the standard form of the generalized
likelihood [2]. Eq. (1.3) is identical to the next expression:

(1.4)

where ηn = min{|Mi-Mj|: Mi ≠ Mj, i, j  {1,2, ..., n}}. This
form  allows  Soto  be  arbitrary  (discrete  or  continuous,  or
others),  thus  is  more  convenient  in  the  later  proofs.  If  Y  is
continuous then S(t|x) = (S(t|0))exp(X'β) = (So (t))

exp(X'β), but

(1.5)

If  Y is  discrete then S(t|x)  = ∏s≤t(1 -  h(s|x))  = ∏s≤t(1 -  h0

(s)eX'β)  If  Y  has  a  mixture  distribution,  then  S(t|x)=  p
(S01(t))

exp(X'β) + (1 - p) ∏s≤t(1 - h02(s)eX'β where p  (0,1), h01 and
h02 are two hazard functions. h0 (t) = ph01 + (1 - p)h02 and S0 (t) =
pS01 + (1 - p)S02

The SMLE of (So, β) maximizes L (S, b) overall possible
survival function S and b Rp, denoted by ( ). The SMLE
of S(t|x) is denoted by  (t|x), which is a function of ( ).
The computation issue of the SMLE under the Cox model has
been studied, but its consistency has not been established under
the model [3]. Their simulation results suggest that the SMLE
is more efficient than the partial likelihood estimator under the
Cox model.

The  partial  likelihood  estimator  is  a  common  estimator
under the Cox model, which maximizes the partial likelihood:

 where  D  is  the  collection  of
indices of the exact observations and Ri is the risk set {j: Mj ≥
Yj}.  The  asymptotic  properties  of  the  estimator  are  well
understood  [4].

The  consistency of  the  SMLE under  the  continuous  Cox
model  with  interval-censored (IC)  data  has  been established,
making use of the following result [5]:

The Shannon-Kolmogorov (S-K) inequality. Let fo and f
be two densities with respect to (w.r.t.) a measure μ and ∫ f0 (t)ln
f0 (t)dμ(t) is finite. Then, ∫ f0 (t)ln f0 (t)dμ(t) ≥ ∫ f0 (t)ln f (t)dμ(t),
with equality iff f = fo a.e. w.r.t. μ.

Under  the  Cox  model  with  IC  data,  the  S-K  inequality
becomes E (lnL(So, β)) ≥E (lnL(S, b))  (S, b), where L(∙, ∙) is
the likelihood function of the Cox model with IC data, which is
different from L ( ∙, ∙) in Eq. (1.3) and S is a baseline survival
function and b Rp. Their approach cannot be extended to the
Cox  model  with  RC data  as  the  key  assumption  (in  the  S-K

inequality) [3].

That is, finite E (lnL (So, β)), may not hold. Indeed, if Y has
a  df

 
 and  β  =  0,  then  L

A related inequality is as follows.

The Kullback-Leibler (K-L) information inequality. Let
fo  and f be two densities w.r.t.  a measure μ.  Then  ∫  f0  (t)ln (f0

/f)(t)dμ(t) ≥ 0, with equality iff f = foa.e. w.r.t. μ.

The K-L inequality says that ∫ f0  (t)ln (f0  /f)(t)dμ(t) exists,
though it maybe ∞. The two inequalities are not equivalent. In
fact,

In this note, we show that the SMLE under the Cox model
is consistent, making use of the Kullback-Leibler information
inequality [6]

2.  The  Main  Results.  Notice  that  under  the  assumption
that ho exists, So, fo, Fo and ho are equivalent, in the sense that
given one of them, the other 3 functions can be derived. Thus,
the Cox model is applicable only to the distributions that the
density  functions  exist,  that  is,  Y  is  either  continuous,  or
discrete,  or  the  mixture  of  the  previous  two.  Since  the
expression of S(t|x) varies in these three cases, for simplicity,
we  only  prove  the  consistency  of  the  SMLE  under  the  Cox
model in the first two cases.

Theorem 1.  Under  the  Cox  model  with  RC  data,  if  Y  is
either continuous or discrete, and ifSo (τM) <1, then the SMLE (

) is consistent t  D (see Eq. (1.2)).

The  proof  of  Theorem  1  makes  use  of  a  modified  K-L
inequality.  K-L  inequality  requires  that  f0  and  f  are  both
densities w.r.t. the measure μ. That is ∫ f(t)dμ(t = 1. However, in
our case, we encounter the case that ∫ f(t)dμ(t)  [0,1].

Lemma 1 (the modified K-L inequality). If fi ≥ 0, μ1 is a

measure, ∫  f1(t)dμ1(t  = 1 and ∫ f2(t)dμ1(t  ≤ 1, then ∫ f1(t)ln 
dμ1(t) ≥ 0, with equality iff f1 = f2 a.e. w.r.t. μ1.

Proof. In view of the K-L inequality, it suffices to prove

the  inequality  ∫  f1(t)ln  dμ1(t)  ≥  0  under  the  additional
assumptions that ∫ f2(t)dμ1(t < 1, ∫ f1(t)dμ2(t = 0 and ∫ f2(t)dμ(t <
1, where μ2 is a measure and μ = μ1 + μ2 Since ∫ f2(t)dμ(t) = 1, f1

and f2 are df's w.r.t. μ.

     L (𝑆0, 𝛽) =  ∏ [(𝑆(𝑀𝑖|𝑋𝑖))
(1−𝛿𝑖)

(𝑆(𝑀𝑖 − |𝑋𝑖) − 𝑆(𝑀𝑖|𝑋𝑖))
𝛿𝑖

],𝑛
𝑖=1    

  L (𝑆0, 𝛽) =  ∏ [(𝑆(𝑀𝑖|𝑋𝑖))
1−𝛿𝑖

 (𝑆(𝑀𝑖 − 𝜂𝑛|𝑋𝑖) − 𝑆(𝑀𝑖|𝑋𝑖))
𝛿𝑖

]𝑛
𝑖=1

∈

S(t |x) ≠ (S(t |0))exp(x' β) under the discrete Cox model ( [3]).

∈

∈ �̂�o, �̂� 

�̂�o, �̂� �̂�

𝐿0 = ∏
exp (𝛽′𝐗𝑖)

∑ 𝐞𝐱𝐩 (𝛽′𝐗𝒌)𝒌∈𝑹𝒊
𝑖∈𝐷  ,

∀ 

∈

𝑓0(t) ∝
𝟏(𝑥∈{2,3,4… })

𝑥(𝑙𝑛𝑥)2 , 𝛿𝑖 ≡ 1 

(𝑆0, 𝛽) = ∏ (𝑓0(𝑌𝑖)𝑛
𝑖=1  and E(lnL )) = 

∑ 𝑓0(𝑥)𝑙𝑛𝑓0(𝑥) ∝ ∫
𝑙𝑛𝑥+2𝑙𝑛𝑙𝑛𝑥

𝑥(𝑙𝑛𝑥)2𝑥≥2𝑥 = −∞.   

∫ 𝑓0(𝑡)ln 𝑓0(𝑡)𝑑𝜇(𝑡 ) ≥ 0   if   ∫ 𝑓0(𝑡)ln 𝑓0(𝑡)𝑑𝜇(𝑡 ) 

≥ ∫ 𝑓0(𝑡)ln 𝑓(𝑡)𝑑𝜇(𝑡 ). 

(�̂�o(t), �̂�  ∀ ∈

∈

𝑓1(𝑡)

𝑓2(𝑡)

𝑓1(𝑡)

𝑓2(𝑡)

0 ≤ ∫ 𝑓1(𝑡)𝑙𝑛
𝑓1(𝑡)

𝑓2(𝑡)
𝑑(𝜇1(𝑡 ) + 𝜇2(𝑡) )                                     (by the K-L inequality) 

= ∫ 𝑓1(𝑡)𝑙𝑛
𝑓1(𝑡)

𝑓2(𝑡)
𝑑𝜇1(𝑡 ) + ∫ 𝑓1(𝑡)𝑙𝑛

𝑓1(𝑡)

𝑓2(𝑡)
𝑑𝜇2(𝑡 ) = ∫ 𝑓1(𝑡)𝑙𝑛

𝑓1(𝑡)

𝑓2(𝑡)
𝑑𝜇1(𝑡 ).
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prove in Theorem 2 for the discrete case and in Theorem 3 for
the continuous case that:

Since ω can be arbitrary in Ω0 and P(Ω0 ) = 1, the SMLE is
consistent.

Before  we  prove  Theorems  2  and  3,  we  present  a
preliminary  result.

Corollary 1. Suppose that μn is a sequence of measures on
the measurable space (J , B) such that μn (B) → μ (B), B

,  f  andfn  (n  ≥  1)  are integrable  functions  that  are  bounded
below andf(x)n→∞ = lim fn(x). Then ∫ f dμ ≤ limn→∞ ∫ fn dμn.

Proof.  Let  k  =  infn  infxfn(x).  If  k  ≥  0  then  the  corollary
follows from Lemma 2. Otherwise, let fn

-(x) = 0 Λ fn(x), fn
+(x) =

0 v fn(x), f-(x) = 0 Λ f(x) and f +(x) = 0 v f(x). Then, fn
+ → f + and

fn
- → f - point wisely, as, fn → f

limn→∞ ∫ fn dμn = limn→∞ ∫ (fn
+ + fn

-)dμn = limn→∞ [∫ fn
+ dμn + fn

-

dμn] ≥ ∫ limn→∞fn
+ dμ + ∫ limn→∞fn

- dμ (by Lemma2, as fn
+ (x) is

nonnegative and |f- (x)| ≤ k) = ∫ f + dμ + ∫ f- dμ = ∫ (f + + f-)dμ = ∫ f
dμ.

Theorem 2. Under the discrete Cox model with RC data,
Eq. (2.1) holds.

(2.2)

.

where B is a measurable set in Rp+1. To apply Lemma 2,

(2.3)

(2.4)

Proof of Theorem 1.  Let Ω0  be the subset of the sample
space Ω such that the empirical distribution function (edf) ,
(t, s, x) based on (Mi, δi, Xi) converges to F(t,s,x), the cdf of (M,
δ, X). It is well-known that P(Ω,) =1. Notice that the SMLE (

)  is  a  function  of  (ω,  n),  say  ( o,n  (t)(ω),  o,n  (tn)(ω)  ,
where ω  Ω and n is the sample size. Hereafter, fix an ω  Ω0

,  since  (= n(ω))  is  a  sequence  of  vectors  in  Rp,  there  is  a
convergent  subsequence  with  the  limit  β*,  where  the
components of β*  can be ±∞. Moreover, So  (= So,n  (∙)(ω)) is a
sequence  of  bounded  non-increasing  functions,  Helly’s
selection theorem ensures that  given any subsequence of  o,
there  exists  a  further  subsequence  which  is  convergent.
Without loss of generality (WLOG), we assume that o → S*

and   →  β*.  Of  course,  (β*,  S*)  depends  on  ω(  Ω0  ).  We

�̂�n  

 �̂�o, �̂� �̂�

�̂�

�̂�

�̂� �̂�

�̂�

�̂� ∈

∈ ∈

(2.1)(𝑆∗(𝑡), 𝛽∗) = (𝑆∗(𝑡), 𝛽∗) (𝜔) = (𝑆0(𝑡), 𝛽) ∀ 𝑡 ∈D

Lemma 2  (Proposition  17  in  Royden (1968),  page  231).
Suppose thatμn  is  a sequence of measures on the measurable
space (J, ) such that μn(B) μ(B), B , gn and fn are non-
negative  measurable  functions,  and   (fn,  gn)(x)  =  (f,  g)(x)
Then,

B B∈→

 

 (1) ∫ 𝑓𝑑𝜇 ≤ 𝑙𝑖𝑚𝑛→∞ ∫ 𝑓𝑛 𝑑𝜇𝑛; 
 

 (2) if 𝑔𝑛 ≥ 𝑓𝑛 (≥ 0) and  lim
𝑛→∞

∫ 𝑔𝑛𝑑𝜇𝑛

= ∫ 𝑔𝑑𝜇, then ∫ 𝑓𝑑𝜇 = lim
𝑛→∞

∫ 𝑓𝑛𝑑𝜇𝑛. 

B

Proof.  For  the  given  ω  Ω0  and  (S*,  β*)  in  the  proof  of
Theorem 1, as assumed,  (ω) → (S*, β*). Defining h*(t) =

 and h*(t|x) = h*(t)
eβ*

'x

 (for S*(t -) > 0) yeilds S*(t|x) and

f*(t|x),  which  are  continuous  functions  of  S*  and  β*.
Consequently,  (·|·)  →  S*(·|·).

Let  Gn(S0  ,  β)  =  lnL(S0  ,  β)/n  (see  Eq.(1.3)).  Then,  the
SMLE ( ) satisfies

∈
(�̂�o, �̂� )

�̂�o, �̂� 

�̂�

𝑆∗(𝑡−)−𝑆∗(𝑡)

𝑆∗(𝑡−)
 

𝐺𝑛(�̂�𝑜, �̂�) =
1

𝑛
∑(1 − 𝛿𝑖

𝑛

𝑖=1

)𝑙𝑛�̂�(𝑀𝑖|𝐗𝑖) +
1

𝑛
∑ 𝛿𝑖

𝑛

𝑖=1

ln (�̂�(𝑀𝑖 − |𝐗𝑖) − �̂�(𝑀𝑖|𝐗𝑖)) 

            = ∫ 𝑙𝑛�̂�( 𝑡|𝐱)𝑑�̂�𝑛(𝑡, 0, 𝐱) + ∫ ln (�̂�( 𝑡 − |𝐱) − �̂�(𝑡|𝐱))𝑑�̂�𝑛(𝑡, 1, 𝐱) ≥ 𝐺𝑛(S0, 𝛽). 

=> 0 ≥ ∫ 𝑙𝑛
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
 𝑑�̂�𝑛(𝑡, 0, 𝐱) + ∫ 𝑙𝑛

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
 𝑑�̂�𝑛(𝑡, 1, 𝐱).

Let  μn(B)  =
 

,∫
�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)𝐵
𝑑�̂�𝑛(𝑡, 0, 𝐱)

            Let 𝐾(𝑡, 0, 𝐱) ≝
1

𝑆(𝑡|𝐱)
 (≥

�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)
) , then

 ∫ 𝐾( 𝑡, 0, 𝐱)𝑑�̂�𝑛(𝑡, 0, 𝐱) = ∫
1

𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 0, 𝐱) 

                                    → ∫
1

𝑆(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱)     (as 𝜔 ∈ Ω0)

                                       = ∫
1

𝑆(𝑡|𝐱)
𝑆(𝑡|𝐱)𝑑𝐹𝐶(𝑡) 𝑑𝐹𝐗(𝐱)     (𝑏𝑦(1.2)); 
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𝑙𝑖𝑚
𝑛→∞ ∀ ∈



(2.5)

(2.6)

(2.7)

(2.8)

               𝑙𝑖𝑚𝑛→∞𝜇𝑛(𝐵) = 𝑙𝑖𝑚𝑛→∞ ∫
�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)𝐵
𝑑�̂�𝑛(𝑡, 0, 𝐱)

                                       = ∫ 𝑙𝑖𝑚𝑛→∞
�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)𝐵
𝑑𝐹(𝑡, 0, 𝐱) (by statement (2) of Lemma 2, (2.3)and (2.4)) 

                                       = ∫
𝑆∗(𝑡|𝐱)

𝑆(𝑡|𝐱)𝐵
𝑑𝐹(𝑡, 0, 𝐱)  (= ∫

𝑆∗(𝑡|𝐱)

𝑆(𝑡|𝐱)𝐵
𝑆(𝑡|𝐱)𝑑𝐹𝐶(𝑡)𝑑𝐹𝐗(𝐱)   (𝑠𝑒𝑒 𝐸𝑞. (1.2)))  

                                        = ∫ 𝑑𝐹∗(𝑡, 0, 𝐱)
𝐵

≝ 𝜇(𝐵).

Verify that ∫ 𝑙𝑛
𝑆(𝑡|𝑿)

�̂�(𝑡|𝑿)
𝑑�̂�𝑛(𝑡, 0, 𝐱) = ∫ 𝐻(

𝑆(𝑡|𝑿)

�̂�(𝑡|𝑿)
)

�̂�(𝑡|𝑿)

𝑆(𝑡|𝑿)
 𝑑�̂�𝑛(𝑡, 0, 𝐱),   𝑤ℎ𝑒𝑟𝑒   

                    𝐻(𝑡) = 𝑡𝑙𝑜𝑔𝑡 ≥ −1/𝑒 for 𝑡 > 0 and  𝐻 (𝑆(𝑡|𝑿)/�̂�(𝑡|𝑿)) ≥ −1/𝑒

𝑙𝑖𝑚𝑛→∞ ∫
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 0, 𝐱) = 𝑙𝑖𝑚𝑛→∞ ∫ 𝐻(

𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
)

�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 0, 𝐱) 

                                                   = 𝑙𝑖𝑚𝑛→∞ ∫ 𝐻(
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
)𝑑𝜇𝑛(𝑡, 𝐱)                                     (see (2.5)) 

                                                   ≥ ∫  𝑙𝑖𝑚𝑛→∞𝐻(
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
)𝑑𝜇(𝑡, 𝐱)       (by (2.6), (2.7) and Corollary 1) 

                                                   = ∫  𝑙𝑖𝑚𝑛→∞𝐻(
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
) 𝑑𝐹∗(𝑡, 0, 𝐱)                                    (see (2.6)) 

                                                   = ∫  
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑙𝑛

𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹∗(𝑡, 0, 𝐱)     

                                                   = ∫ ∫  
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑙𝑛

𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑆∗(𝑡|𝐱)𝑑𝐹𝐶(𝑡)𝑑𝐹𝐱(𝐱)                (by Eq. (1.2)) 

                                                   = ∫  𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱)                           

Similarly, since 
�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
≤

1

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
≝ 𝐾(𝑦, 1, 𝐱) and 

                     ∫ 𝐾(𝑡, 1, 𝐱)𝑑�̂�𝑛(𝑡, 1, 𝐱)
𝐵

= ∫
1

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱)

𝐵
 

                                                             → ∫
1

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑆𝑪(𝑡)𝑑𝐹(𝑡|𝐱)𝑑𝐹𝑿(𝐱)

𝐵
, 

letting 𝑣𝑛(𝐵) ≝  ∫
�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱)

𝐵
, 

        𝑙𝑖𝑚𝑛→∞𝑣𝑛(𝐵) = ∫ 𝑙𝑖𝑚𝑛→∞
�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)

𝐵
        (by statement (2)of Lemma 2) 

24   The Open Mathematics, Statistics and Probability Journal, 2020, Volume 10 Qiqing Yu



.

(2.9)

                                = ∫
𝑆∗(𝑡 −|𝐱)−𝑆∗(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)

𝐵
 

                                 = ∫ ∑ 𝟏𝑡 ((𝑡, 𝐱) ∈ 𝐵)
𝑓∗(𝑡|𝐱)

𝑓(𝑡|𝐱)
𝑓(𝑡|𝐱)𝑆𝑪(𝑡)𝑑𝐹𝑿(𝐱)                      (see Eq. (1.2)) 

                                 = ∫ 1𝑑𝐹∗(𝑡, 1, 𝐱)
𝐵

≝ 𝑣(𝐵).

                     Since ∫ 𝑙𝑛
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱) 

                           = ∫ 𝐻(
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱), 

 and vn converges set wisely to a finite  measure v  (see (2.9)),  by a similar  argument as in

(2.4), (2.6), (2.7) and (2.8), we have:

 

𝐻(
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
) ≥ −

1

𝑒

  

(2.10)

                    𝑙𝑖𝑚𝑛→∞ ∫ 𝑙𝑛
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱) 

                    = 𝑙𝑖𝑚𝑛→∞ ∫ 𝐻(
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
 𝑑�̂�𝑛(𝑡, 1, 𝐱) 

                       ≥ ∫  𝑙𝑖𝑚𝑛→∞𝐻(
𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)
)𝑑𝐹∗(𝑡, 1, 𝐱)     

                  = ∫ ln 
𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)     (as Y is discrete).        

                 0 ≥ ∫  𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱) + ∫  𝑙𝑛

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)

𝑆∗(𝑡 −|𝐱)−𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)                        (by Eq. (2.2)) 

                    = ∫  𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱) + ∫  𝑙𝑛

𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)                          (by 2.8)and (2.10)) 

                    ≥ 0                                                          (by Lemma 1, the modified K-L inequality). 

Thus,      Hence,

(S0  (t),β)  =  (S*(t),β) t D  by  the  2nd  statement  of  the  K-L
inequality.

Theorem  3.Under  the  Cox  model  with  RC  data,  if  Y  is

continuous then Eq. (2.1) holds.

Proof.  For  the  given  ω Ω  and  (S*,β*)  in  the  proof  of
Theorem 1, as well as (ω) and (t|x)(ω), we have S*(t|x) =
(S*(t))

exp(β*
'x). By a similar argument as in proving Eq. (2.8), we

can show:

 ∫  𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱) + ∫  𝑙𝑛

𝑓∗(𝑡|𝐱)

𝑓(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱) = 0. 

�̂�∀ ∈ �̂�

(2.11)

In view of Eq. (1.4) due to Y is continuous, we denote:

(2.12)

(2.13)

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑙𝑛
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 0, 𝐱) = 𝑙𝑖𝑚𝑛→∞ ∫ 𝐻(

𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
)

�̂�(𝑡|𝐱)

𝑆(𝑡|𝐱)
 𝑑�̂�𝑛(𝑡, 0, 𝐱) 

                                                                         ≥ ∫ 𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱)

 

𝐺(𝑡, 𝐱, 𝑛) =
�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)
 ,   𝐴𝑘 = {𝐺(𝑡, 𝐱, 𝑛) ≤ 𝑘, ∀ 𝑛}  and 𝐵𝑘 =  𝐴𝑘\𝐴𝑘−1

𝐺(𝑡, 𝐱, 𝑛) =
�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)
=

�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)/𝜂𝑛

𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)/𝜂𝑛
→

𝐹∗
′(𝑡|𝐱)

𝐹′(𝑡|𝐱)
 a. e.,   
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as  S*  is  a  monotone  function,  S*
'  exists  a.e.,  and  so  do

S*
'(t|x) and F*

'(t|x). We have

(2.14)

The reason is as follows. For each (t, x) such that F'(t|x) >
0 and Eq. (2.13) holds,

F*
'(t|x) /F'(t|x) (=f*(t|x) /f (t|x)) is finite. Then, there exists no

such  that  G(t,  x,  n)  <  1  +  F*
'(t|x)  /F'(t|x)  for  n  ≥  no  .  On the

other hand, G(t, x, n) is finite for n =1, ..., no . Thus, G(t, x, n) <
k for some k. Since Eq. (2.1) holds a.e. and ∫ 1dF(t, s, x) = 1,
Eq. (2.14) holds.

We shall prove in Lemma 3 that

.

∫ 𝟏(Ս𝑘≥1𝐵𝑘) 𝑑𝐹(𝑡, 𝑠, 𝐱) = 1.

(2.15)

.

(2.16)

 

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑙𝑛
𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)B𝑘
𝑑�̂�𝑛(𝑡, 1, 𝐱) ≥ ∫ 𝑙𝑛

𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)B𝑘
𝑑𝐹(𝑡, 1, 𝐱)     for  𝑘 ≥ 1.             

Then,  

𝑙𝑖𝑚𝑛→∞ ∫ 𝑙𝑛
𝑆(𝑡 − 𝜂𝑛|𝐱) − 𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱) − �̂�(𝑡|𝐱)
 𝑑�̂�𝑛(𝑡, 1, 𝐱) 

= 𝑙𝑖𝑚𝑛→∞ ∫ −𝑙𝑛𝐺( 𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱) 

= 𝑙𝑖𝑚𝑛→∞ ∑ ∫ −𝑙𝑛𝐺(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱)
B𝑘

𝑘≥1                                                       (by (2.14)) 

= 𝑙𝑖𝑚𝑛→∞ ∫ ∫ −𝑙𝑛𝐺(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱)
B𝑘

𝑑𝑣(𝑘)           (𝑑𝑣 is a counting measure)
𝑘≥1

 

= 𝑙𝑖𝑚𝑛→∞ ∫ ∫ 𝐻((𝐺(𝑡, 𝐱, 𝑛))−1)𝐺(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱)
B𝑘

𝑑𝑣(𝑘)           (𝐻(𝑡) = 𝑡𝑙𝑛𝑡)
𝑘≥1

 

≥ ∫ 𝑙𝑖𝑚𝑛→∞
𝑘≥1

∫ 𝐻((𝐺(𝑡, 𝐱, 𝑛))−1)𝐺(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱)𝑑𝑣(𝑘)             (by Corollary 1, as
𝐵𝑘

 

𝐻(𝑡) ≥ −
1

𝑒
 𝑎𝑛𝑑 ∫ ln(𝐺(𝑡, 𝒙, 𝑛))−1𝑑�̂�𝑛(𝑡, 1, 𝒙)     is bounded below by − 1/e

𝐵𝑘

 

 ≥ ∑ 𝑙𝑖𝑚𝑛→∞ ∫ −𝑙𝑛𝐺(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱)
B𝑘

𝑘≥1                                                    ( by (2.15)) 

= ∑ ∫ 𝑙𝑛
𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
𝐵𝑘𝑘≥1

𝑑𝐹(𝑡, 1, 𝐱) 

= ∫ 𝑙𝑛
𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)    

   

 

Since �̂�(𝑡|𝐱) is the SMLE,   

0 ≥  𝑙𝑖𝑚𝑛→∞ [∫ 𝑙𝑛
𝑆(𝑡|𝐱)

�̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 0, 𝐱) + ∫ 𝑙𝑛

𝑆(𝑡 − 𝜂𝑛|𝐱) − 𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱) − �̂�(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱)] 

                    ≥ ∫ 𝑙𝑛
𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)
𝑑𝐹(𝑡, 0, 𝐱) + ∫ 𝑙𝑛

𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
𝑑𝐹(𝑡, 1, 𝐱)               (by (2.11) and (2.16)) 

                    ≥ 0                                                (by Lemma 1 (the modified K − L inequality)). 
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3. RESULTS

Lemma 3. Inequality (2.15) holds.

.
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and vn converges set wisely to a finite measure v by a similar
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The last inequality further implies that ∫ln d F(t,0,x) +

∫ln d F(t,1,x) = 0. Thus, (S0 (t),β) = (S*(t),β*) t  D by the
2nd  statement  of  the  K-L  inequality  and  by  the  assumption
ASI.

∀ ∈

𝑆(𝑡|𝐱)

𝑆∗(𝑡|𝐱)

𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)
 

Proof.  Let  k  ≥  1  and

,  where  B  is  a measurable set and 

ν𝑛(𝐵) ≝ ∫ G𝑛𝐵ՈB𝑛
(𝑡, 𝐱, 𝑛)𝑑

�̂�𝑛(𝑡, 1, 𝐱) 𝐺(𝑡, 𝐱, 𝑛) =

�̂�(𝑡 −|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 −|𝐱)−𝑆(𝑡|𝐱)
∈ [0, 𝑘] on B𝑘, 

   lim
𝑛→∞

ν𝑛(𝐵) = lim
𝑛→∞

 ∫ G𝑛𝐵ՈB𝑘
(𝑡, 𝐱, 𝑛)𝑑�̂�𝑛(𝑡, 1, 𝐱) 

                     = ∫ lim
𝑛→∞

𝐺(𝑡, 𝐱, 𝑛)𝑑𝐹(𝑡, 1, 𝐱)
𝐵ՈB𝑘

   (by Lemma 2, as 𝐺(𝑡, 𝐱, 𝑛) ∈ [0, 𝑘]) 

                     = ∬ 𝟏((𝑡, 𝐱) ∈  𝐵ՈB𝑘)
𝑓∗(𝑡|𝐱)

𝑓(𝑡|𝐱)
𝑓(𝑡|𝐱)S𝑐(𝑡)𝑑𝑡𝐹𝐱(𝐱) (see Eq. (1.2)) 

                     = ∫ dF∗𝐵ՈB𝑘
(𝑡, 1, 𝐱) ≝ 𝑑ν(𝐵) (see Eq. (1.2)) 

Since H((S (t-ηn|x) - (S (t|x))/((  (t-ηn|x) - (  (t|x))) ≥ - 1/e�̂� �̂�

 

𝑙𝑖𝑚𝑛→∞ ∫ 𝑙𝑛
𝑆(𝑡 − 𝜂𝑛|𝐱) − 𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱) − �̂�(𝑡|𝐱)B𝑘

𝑑�̂�𝑛(𝑡, 1, 𝐱) 

=  𝑙𝑖𝑚𝑛→∞ ∫ 𝐻(
𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)B𝑘
)

�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)

𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)
𝑑�̂�𝑛(𝑡, 1, 𝐱)

≥  ∫ 𝑙𝑖𝑚𝑛→∞𝐻(
𝑆(𝑡 − 𝜂𝑛|𝐱)−𝑆(𝑡|𝐱)

�̂�(𝑡 − 𝜂𝑛|𝐱)−�̂�(𝑡|𝐱)B𝑘
)𝑑𝐹∗(𝑡, 1, 𝐱) 

=  ∫ 𝑙𝑛
𝑓(𝑡|𝐱)

𝑓∗(𝑡|𝐱)B𝑘
𝑑𝐹(𝑡, 1, 𝐱)     for 𝑘 ≥  ם   .1
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