The Open Statistics and Probability Journal, 2009, 1, 65-70 65

A Bivariate Law of Iterated Logarithm for Partial Sums and Delayed

Sums
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Abstract: When the random variables are positive strictly stable, we obtain a bivariate law of iterated logarithm for the

vector of partial sums and delayed sums.
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1. INTRODUCTION

Let {X,, n>1} be a sequence of independent identically
distributed (i.i.d) positive strictly stable random variables

(r.v.s) with exponent a, 0 < a < 1. Set g :ixk and
=1

n

T :smn-sn, where {a,} is non — decreasing sequence of

1/ou 1o
a

8, Yo
positive integers. Write & = (Sn ) ( T, ) , Where
n

A
A
Hn:(log logn) and yn—(lognﬂoglogn) :
a

n

When (S, ,) and (S,, ,) are independent copies of (S,), the
authors in [1] have obtained the set of all limit points of the
en Hﬂ

I,n SZ,n

sequence
la ? nl/a

. In this paper, under different
n

conditions on (a,),

we obtain the almost sure limit sets of the se-

quence{&n,n = 1} . A careful observation tells that the limit

sets change with the rate of growth of a, in comparison with
n.

The LIL in this paper is based on the right tail of the d.f.
or the probability of occurrences of large values (following
power law) in spirit, is on the lines of [2]. In [3], LIL has

. S T . .
been obtained for n_ n , for suitable choices
annl/a ﬂnanl/a
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of a, and B,, which depend on the behavior of the d.f. near
the tail approaching zero (exponentially fast). As such, the
normalization in [3] is linear and in the present paper, it is
power normalization.

Through out this paper [x] stands for the largest integer
which is less than or equal to a positive number x, where as
a.s and i.0 mean almost surely and infinitely often respec-
tively. C, € (small), k (integer) and N (integer), with or with
out a suffix, stand for positive constants. For any sequence
(Y,) of r.v.s, lim sup (inf) Y, = o (B) is to be read as lim sup
Y,=oa and lim inf Y, = f.

In the next section we present some preliminary results.
The almost sure limit sets of the vector sequence {gn,n > 1}

. . . a
are obtained in the last section. We assume that —=~~b |,
n

where (b,) is non-increasing. For instance, if a, = [0"], 0 <p

aﬂ

n’ . n? a
= . Taking b,=—, one can see that - ~b_
n n n
and (b,) is non-increasing. However, taking p = 4, one can
observe that 2= fails to be non-increasing. Similar justifica-
n

<1 then
n

tion holds when a, = [np]. Here b“=Ez p,0<p<lI.
n

2. LEMMAS
Lemma 1 (Extended Borel — Cantelli Lemma)
Let (E,) be a sequence of events in a common probability

space. if (1) i P(E, )= and
n=1

n n

(ii) 2 P(E,CE,)

Lim inf

" (ZP(EQ)Z
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¢ then P(Exi0)> c.
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For proof, see [4, lemma P3, p.317].
Lemma 2

Let (A,) be a sequence of events in a common probability
space. If P(A,) — 0 and }“’:p(A NA, )eoo then P(A, i0)
n=1

= 0. For proof see [5, lemma 1*, p.385].

Lemma 3

Hn
limsup (inf)( S, ) =¢"“(1) as

s 1,lllnc

For proof see [1]

Lemma 4

Let {X,, n>1} be i.i.d positive strictly stable r. v. s with
exponent o, 0 < a < 1. Let (a,), 0<a,= n, be a sequence of

non - decreasing integers with s _1, , where b, is non -
n n
increasing. Then

1/
aa

0
n— n

Lim Inf (T“,) =1 a.s

Proof

To prove the lemma it suffices to show that for any ¢ > 0,

T &

Pl < (n logn) io|=1 ()
a a

and

P[Tl/“a = (n 1ogn) i.o]=0 @
a a

The fact that X,’s are positive valued strictly stable r.v.s
implies that T, and X, are identically distributed. Observe

la
n

that 1 is non-decreasing implies ( n log n)s—> ®© asn —
a, .,
o, We therefore have
P|T saln/'Z (n log n) =P|X = (n log n) ’ which
an an
implies that
3)

Il
—_

n—so
n

Lim P T"saln/“ (n logn) ]
a

Note that
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P[T“ < afl/“ (n log n) i.0 ] P U (Tm < a::" (m log In] }
an n=lm=n am

" Lim P{U T <al® (m log m]
n— a

m=n

s

n—o
n

= Lim P(Tn = ai/“ [n log nJ
a

From (3), we get P Tnsai.m (Il logn) io |=1 and
a

hence the proof of (1) is complete.

Now we will complete the proof of the Lemma by show-
ing that for any € € (0, 1),

P Tnsa]n/a (Il logn] io |=0- We define ng; as the
a

n

a
n + ny 5 k
logloga,

smallest integer greater than or equal to

=1, 2,...; and n, as first integer n such that a, > 3. Let C,,
D, x and E, x denote the

events

n
n

C ={S . -S =al (n log n) ’
a

n+: n n
Ny Sn<fy,y la
Myeiy

D,={ inf S-S <al* [nk” log nkﬂ) and

-£

. Notice that (Cy i.0)

K A, k1 et | g k1

My

E =4S . -S =a’ [nk“ logn

(Ck 1.0) C (Dg 1.0) C (Ex i.0). Hence in order to prove (2), it
is enough if we show that P(Exi.0)=0 4)

We have,

Mty Oy

P(E,)=P|S S =<a' [“k log nk] B

Ve -
a, n, .
P|X s—————|—% logn
Va a k
(nkJrank 'nk+1)

We observe that for k >k

" e 1/a -£
a
a n a n
Dyt — k lOg n, <2 Dy k+1 lOg n,_, .
n +a -n a, a4, M
k n k+1

y

k

The fact that a,/n is non — increasing as n — o implies that
a

a a n
Nyl < Nk or Nl < k+1 .
1’lk ank rlk

Again  from the relation
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an, , one can show that M, as

n +
logloga, 1y

SR Y
k—oo. Hence for a given €,>0 there exists k; such that

st (1+,) forall k= k.

e

Consequently for all k>k;,

P(E,) = P|X, s(1+el)(;k log n,

n

] . From theorem 1 of [6,

p.424], one can now get

-o

P(E, )= Cexp {- (l-i-gl)(:lk log nk] , for some C > 0.

ny

Let (1+,51 )'“ =(1-¢,) €2 > 0. Then

PE, )= Cexp -(l-sz)[;k log nk]

y

We now claim that, for some & > O,
a
exp -(l-e)ilogn =oi; )
2/l a k n (1+e,)
n K (log nk)
We have
n
exp -(l-gz)[ak log nk] n (log nk)(m])
My a"
S —— 1-g, )| 2
n, (lognk)(m") °xp ('62) Z ogn,
The fact that
s (log nk)(”"ﬁ) e immediately ~ implies  that
a
n I+ey
f (IOg nk)( ) —0 as n — o and the claim
exp (l-ez) :—k log nk]

is justified. Hence there exists some C; (>C) and k; such that
for all k > ko,

1 a, 1 Now

! )(”53) '

a
PE)=C | 2| —n—
= (“k] (logn,,,)"™

a

1y (log n,

n gives

n + —
logloga,

w1 = Ny a, = (n, - n)log loga, -

. We can find

Using the fact that logloga,
———*—0, as n—>©

(log n, )7
a k; >k, such that for all k > k3,
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- log log a _ 1 .
n. -n n, n_.-n
P(Ek)s CI ( krll k) (1+ey) sCl ( kr: k) £y
K (log nk) K ( 1‘7)

From the relation Mt _ 1
n

k

. Since

ask—>ooonegets} dt : zi nkﬂ-nks
5 ftogt) S % 1, (10gn, )]

} dt <’ one  gets i n, -n <

" ftog) ¥ & o, (1ogn, )]

or 2 P(E, ) <00~ Which in turn establishes (4) by appealing

to l;3(: lemma. Hence the proof of the Lemma is complete.

Lemma 5

la
n

n—s0

2
T
Lim Sup ( 1 J =e" as

Proof

The proof'is on lines of [7] and hence is omitted.

3. LIMIT POINTS OF THE SEQUENCE {?gﬂ,n > 1}

We observe by lemmas 3, 4 and 5 that the set of a.s. limit
points of the sequences (g ) is included in [1, €] x [1, "*].

We will devote this section for the identification of the limit
sets of the sequence {gn,n > 1}, when a, =[n"],0<p<1,a,=

[np], 0 < p < 1 and _|_n

a

! (logn)q
We will show that a.s. limit set of {g n= 1} coincide

, q@ > 0. Define

1
1, e

u v

X e“,ea]:0<u,v<l,u+v sl}'

1
l,e“} and Az{

with A, and A, respectively, when

a, = [n°], 0 < p <1, a, = [np], 0 < p < 1. When

- ,q >0, we show that the a.s. limit set is

n

(logn )q

again A,. Hence the limit sets change with the rate of growth
of a, in comparison with n.

Theorem 1

When a, = [n"], 0 <p < 1, the set of all a.s. limit points of

the sequence {gn,n > 1} coincides with
1 1

A={[1 e |x l,e“} :

Proof

The fact that the limit set of the sequence {g n= 1} is

contained in A; is immediate from the lemmas 3, 4 and 5.
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Hence the proof will be complete once we establish that
every element of A| is a limit point of {g n= 1}. In other

words for [ei e |E A with 0 <u, v <1and0<e<min (u,

v), we have to show that,
we ure
Pl € |e“.,e”

Note that a, = [n"], 0 < p < 1 implies that
y,~(1-p)logn. We prove that for some d>0,

X

e“,e“)i.o =1 )

e ve o ovie .
e“ e |io|l=d>0- This is

u-
a

PlE €|e X

done by applying lemmal. By Hewitt — Savage zero — one
law (5) will be established.

1
Define n = [k“'p)v } (6)

and

P v-p) P (v+a)(1p)
a a a a
n} < T“k =n}

Since X;’s are positive valued strictly stable r.v.s and (S,)
and (T,) are independent, we have

P(H,)=P

(lognk)% =X = (lognk)u:)P

v(i-p) (v+e)(1-p)
o o
n, =X = n,

2

Since X;’s are positive strictly stable r.v.s, we have P( X
2x)~0x™) (7

Using (7), we note that there exists constant C; (>0) and
k; such that for all k > k;,

P(H,) G (8)
k(log k)*

which implies that 2 P(H,)=c" Observe that

ZEP(H NH ):2;\%1@ mH) | ©)
iP(Hk) iP(Hk) ZP(Hk)

In order to establish (9) of E.B.C lemma, we proceed as
under. For s >k, let

Vasudeva and Divanji

« <S =n/* (lognk)u:}’

p, v(l-p) p, (vte)1-p)
“ < T =ng @

L= n;/o’(logns)“ sSns =n"* (logn )W},

ute

”“(logn )u:_( 1/a(10gn )a +na+t(lp))

|ni/a (logns)% ( Va (logn )u: +na (Vaé)(l p)] < Sns -(Snk -&-Tnk ) <

p, v-p) b, (vre)(1-p)
L={n* ¢« <T <n* <« .
S

WehaveEkﬂEs= {Ll ﬂLzﬂLj,ﬂLg}C {Ll ﬂLzﬂ
L, NLs} (10)

Since P(L3)=P((logns)u:les(logns)u: . Using (7),

one can find constants C,, k, such that for all k > k,

P(L3)ZL (11)
(logns)w

Let s > k (log k)", A is sufficiently small compared to (1-
u), we have

e, 7, ot o

s, -(s,+T,)
(ns-(nk +n£))”q

n’ (logn )%

= (ns i, n? ))m

n'e (logn )
la

=P LI GV A
(1—(nk+ni)n; )

=P/ X =

Using the fact that s > k (log k)" one can note that
n, +ng —» 0 as k — o, one can find a C; >0 and k3 such that
n

s

that for all k > k3, P(LA)SL (12)

(logn, )"
From (11) and (12) one can notice that there exists a con-
stant C4 >0 such that for all
k>ks=max (ko , ki), P(Ls) <C4 P(L3). (13)
From (9) we have for s > k (log k)" and for k > ky,
PH,NH,)=<PL,NL,NL, NLy)=P(L, NL,)P(L,)P(Ly)
=C, P(H,)P(L,)P(L;)

~P(H, NH,)= C, P(H,)P(H,) (14)

Now for (k+1) < s < k (log k), using the inequality
P(H, NH,)=P(H, NL,) and observing that (Sn ), (Tn ) and

k

(Tn ) are independent, one gets P(H, N H_) =< P(H,)P(L,)-
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Again using (7) and the fact s > k+1 one can find a con-
stant Cs >0 and ks such that for all k > ks, P(Ls)sg-
k

Hence for all k> ks, p(H, N H,) < <5 P(H, ) (15)
) k
From (8) note that

PH,) = P(Xl > (1ognk)u;)1>

X,=n ¢ ) By applying (7) in

(15) one can find constants C¢ > 0 and k¢ such that for all k >

Ke, P(H, NH,) s#'
k*(log k)™?

NOW n-1 k(logk)A n-1 k(log k A n-1
>3 pH,NH)<C Y - log )(u_€)<c6 —
keky skt Kk, k’(log k) i k (log k)
For n > Ni, we have
n-1 k(logk)’\

S Y P, NH,)=C,(logn) - From (8) we have, for

n>N29 (16)
n-1 n
P(H,)= G (u£)>C (logn)uu’e)’ for some G
K=k, k=kg k(logk)
> 0. 17
From (14), (16) and (17) one can get Cg >0,

2 P(H, NH,)
1 s=

Lim inf ===

" (2P(Hk))2

In view of (9), appealing to lemma 1 and Hewitt — Sav-
age zero — one law one gets P(Hy i.0) = 1. Hence the proof of
the theorem is completed.

o (18)

Theorem 2

When a, =
of the sequence {&n,n > 1} coincides with A,.

[np], 0 <p <1, the set of all a.s. limit points

Proof

Here y =~loglogn. Hence to prove the assertion it is

enough to show that for any ¢ >0,u >0 and v >0,

PlE Ele“ e ;e*,e” [Lo[=0 (19)
whenever u +v > 1 and
P|E € ej,e7 ;ej,eT )i.o] =1 (20)

wheneveru +v < 1.

Let (u, v) be such that u + v > 1. Define n, = [ek] and

denote the events
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An:{sn > 1/a(10gn)u-g , Sn+ -S, = pl/oz Va (10gn)v(;s},

A2,n={Sn+ -S, >p"“n lm(logn)vﬁf-e}

Observe that A,={A,, NA,, }. To show (19), we ap-

peal to Lemma 2. Since (S,) and (S ., - S, ) are independ-

nta,

ent, we have

(10g n) “ P

such that ut+v-2e>1 and using (7), we get for some C; (>0)

G _ Hence P(A;) = 0 asn — oo,

P(A )=P|X

X, 2(1ogn)va. Choose €

constant, P( An) <

We have

(A mAnH)_A m(Al w1 U 2n+l) (A ﬂAl n+l) (A mA;nl) (21)

Note that (A NAS )—

1, n+1

S > n'* (logn)% S, -S >p”“ 1/"(log n)%,

nta

u-&

Sy < (1) (log (1) «

u-& V-€

Sn>n”“(logn)7,s -S >p"“n 1/“(logn)7,

S, <(n+1)" (1og (n+1)7

u-& u-&

e <log n)? <S_<(nt+1)" (log (n—|—1)7, Hence

V-€

S —S >p1/a Va (logn)7

(A NA} +1) (logn)ua8<X <(n:1-1)

t
u-& V-€

(log (n+1)7 , X, >p" (logn)7

< P(un <X, <vn)P[X2>p”"‘(log n)v:J

u-&

where u, =(logn) « and V"_(Hl)ua(log (n+1))%' Hence
n

we have,
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¢ here f is th it
P(A mAln+l) ff(x)dx , where f is the density

(logn)(”)
function of a positive strictly stable r.v, we have density of
positive stable law given by f(x)= < + C, +0 1 ,
1 Xl+2(x Xl+2(x

where C; > 0 and C4 > 0 are constants. Hence for x large,
1 1
J’_

one can find C > 0 such that fx)=s C . Con-
1+a 1H2a
X X
sequently for n large,
P(A,NA; )= ¢ f(1+ l)dx
n+ v-a I+a 2+a
(logn) u, A X X
o C Jafa o @)
(logn) alu® v¢ ] 2alul® v©

-1 -(u-¢)
We have u;l"-v;l“=(log n)'(“'g) _(Hl) 10gn(1+l)
n n

2
1 1_(1_1+c (log )™ i : (23)
(logn)"* n (u-e) (u-)
10gn+log(1+1) n(logn)
n
On similar lines one can show that
w v n(log n)(”) n(log n)2Ll ¢
For n large say n > N, from (22) one can show that
(A ﬂA; - )< EEn .Sinceu +v-2e>1, we
n (log )
have
1
EP(A ﬁA1 nH) <C Ew<oo, for some
“ n(logn)
Cy>0 (25)
Again following similar lines, one can show that
EP(A NAS,., )< . (26)
Using (25) and (26) in (21), it follows that

iP(AnﬁAC )<ooand hence P(A NA l10) 0,
n=1

which implies the proof of (21) by Lemma 2.
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1

Defining n,= ek"”} and following the lines of proof

similar to those of Theorem 1, the proof of (20) can be ob-
tained and the details are omitted.

Theorem 3

When a = _n
(logn )q

points of the sequence {En,n > 1} coincides with A,.

, q > 0, the set of all a.s. limit

Proof

Here y = (1+q)loglognand from lemmas 4 and 5, we
know that

1

(1+q) log logn
Lim Inf (Sup) | -2 =1 (e”‘”)a.s :
n—sow n
en
S bl o
Hence E=—1 , n
n n1/0( a 1o

n

Proceeding on the lines of Theorem 2, the a.s. limit set
can be shown to be A,. The details are omitted.
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