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I. INTRODUCTION  

 The last few years have seen a growing interest in the so-
called ‘blind problem’ [1-6]. In general terms, blind process-
ing can be defined as digital processing of unknown signals 
which are transmitted through a linear channel or medium 
with unknown characteristics and additive noise. In contrast 
to the blind identification method, the classical method of 
channel identification analyses the output signal for an input 
signal with given characteristics. The reason why blind 
channel identification (BCI) has lately attracted a lot of re-
searchers’ interest is the apparently high potential that this 
method has for application in the rapidly developing mobile 
communications industry.  
 Blind channel estimation is applied in a variety of indus-
tries other than telecommunications. Some examples include 
compensation for signal distortions caused by multipath 
propagation effects in radiolocation and radio navigation 
systems; correction of linear distortion in image processing 
systems; seismic signal processing in geophysics; distortion 
compensation in speech recognition systems.  
 In solving the problem of BCI, identifiability of a system 
is an important issue. ‘Blind’ identifiability of a system can 
be defined as a possibility to restore its transfer function 
and/or impulse response (IR) based on the data extracted 
from the output signal alone, with accuracy sufficient for 
obtaining the correct complex factor. SISO channels identifi-
ability conditions are the scope of statistical identification 
suggesting that there is a set of output signal representations 
which are characterized by the same impulse response of the 
channel. In this case the system is identifiable if its input 
signal is a non-stationary or non-Gaussian random process.  
 Y. Sato must have been the first one to take advantage of 
the non-Gaussian character of information signals in digital  
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amplitude-modulation systems. In 1975 he proposed an algo-
rithm of direct blind equalization [7]. Five years later D. N. 
Godard adapted Sato algorithm [8] for the case of combined 
amplitude-phase modulation (the algorithm proposed by Go-
dard is also known as Constant Modulus Algorithm). Nowa-
days various criteria of adaptation of linear equalizers are 
used in many algorithms of blind channel identification and 
channel equalization. Such algorithms form the class of sto-
chastic gradient algorithms, or Busgang algorithms. The 
main disadvantages of these algorithms include a relatively 
slow convergence, the need for valid entry conditions, a 
greater computational complexity which is due to nonlinear 
character of equalizer coefficients optimization procedure, 
and a low noise immunity.  
 Another class of blind identification algorithms, which 
were introduced only recently, includes algorithms using the 
rule of maximum likelihood. Such algorithms are character-
ized by high asymptotic efficiency and noise immunity, pro-
viding for reliable channel estimates. At the same time, those 
algorithms have two major problems, namely, computational 
complexity and local maxima [9]. 
 One effective technique to develop blind identification 
algorithms is the so-called method of moments. This method 
basically consists in taking away the equations that link input 
and output signals of system and substituting for them equa-
tions linking moment functions corresponding to those sig-
nals. Although, in terms of their asymptotic convergence, the 
estimates obtained by the method of moments are not the 
best ones (see [10]), the method usually produces a fair 
channel estimate, even though it does not apply the nonlinear 
optimization procedure. It gives computational advantages in 
comparison with similar methods, including a likelihood 
approach. In addition to that, the method of moments does 
not require the prior knowledge of stochastic distribution for 
signals and noise, which, in context of ‘blind problem’, is a 
key advantage. It is well known that the covariance function 
of a stationary process represented by a linear system output 
does not provide any information on the phase of its transfer  
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function. The channel can only be identified for a narrow 
class of systems with minimal phase. This explains the re-
searchers’ interest in high order statistics and non-Gaussian 
models of entry signals [9, 11]. It is possible to use second-
order statistics for blind channel identification in case of a 
non-stationary model of input or output signals and periodi-
cally-correlated signals. Identifiability of telecommunication 
channels with non-stationary input was demonstrated in [12]. 
The method of moments usually uses cumulant spectrums 
for channel estimation, since equations describing an un-
known channel can be written in a simple algebraic form. In 
this paper we introduce a new approach to the synthesis of 
statistical blind identification algorithms, which is based on a 
polynomial representation of the moments of random se-
quences [13].  

II. POLYNOMIAL STATISTICS AND MANIFOLDS 
GENERATED BY THEM 
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where symbol «*» stands for complex conjugation, and E is 
an operator of probabilistic average. 
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 The probability density of complex coefficients of a ran-
dom polynomial can be found by calculating the r2 -
dimensional Fourier inverse for the characteristic function 
(2). 

 If 
 
y z( ) = h z( ) x z( )  is a product of random polynomial 

x z( )  and nonrandom polynomial h z( ) , then  
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 This expression shows that addition of polynomial mo-
ments of independent random polynomials isn’t commuta-
tive. But addition of polynomial cumulants has commutative 
property. 

 Let us define polynomial cumulant of order
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where cum is symbol of random value cumulant. 

 The relation between the characteristic function! of r 
values of a random polynomial ( )x z  in points 

1
,...,z zr C!  

and the set of polynomial cumulants can be described as fol-
lows: 

 

  

ln ! p
1
,..., p

r
; z

1
,..., z

r( )( ) =

= jl 1

m
1
!...m

r
!

k
1

m
1

"

#
$

%

&
'

k
1
,...,k

r
=0

m
1
,...,m

r

(
m

1
,...,m

r
=l

(
l=1

)

( * ...*
k

r

m
r

"

#
$

%

&
' +

+K x

k
1
,...,k

r
,m

1
,...,m

r

z
1
, z

2
,..., z

r( ) p
1

m
1
,k

1 p
1

*( )
k

1

* ...* p
r

m
r
,k

r p
r

*( )
k

r

.

   

              (7) 



Given Correlation Manifolds and their Application The Open Statistics and Probability Journal, 2009, Volume 1    57 

 For any given polynomial cumulant we can determine a 

set of points in space r
C for which the polynomial cumulant 

has zero value: 
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 Such points form a set of polynomial cumulant roots in 
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C . 

 Let us see how polynomial cumulants and manifolds they 
generate, can help identify statistical relations between com-
ponents of a random vector. 
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 Let n
R!x  be a random vector with probability density 
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 We specifically can find all possible values 21 zz !  for 
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 In (17) and (18) 0!it . 

 A manifold  !" C
r  is called irreducible when it can be 

presented as
  
! = !

1
U!

2
, where 

 
!

1
 and 

 
!

2
 are affine 

manifolds, if and only if 
 
!

1
= ! or

 
!

2
= ! . 

 If r
C! "  is an affine manifold, then there is only one 

way to represent it as follows: 

 
   

! = !
i

i=1

n

U ,           (19) 

where every 
i

!  is irreducible and , .
i j

i j! " ! #  

 Thus any affine manifold can be obtained or represented 
as a finite union of irreducible manifolds (so states the corol-
lary of Hilbert’s theorem on the finite nature of an ideal) [9]. 

 Now we let us look at some simple cases illustrating vis-
ual features of reducible and irreducible manifolds. 

Example 1 

 Let 
 
x z( )!C z"# $%  be a random polynomial of degree 

1n !  specified by random vector of coefficients n
x R!  

with zero probabilistic average, independent components and 
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variance of components 2! . Then the zero correlation mani-
fold of a random polynomial can be factored to a union of 
1n !  irreducible manifolds: 
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 With t v=  viewed as the so-called time parameter, a 
four-dimensional zero-correlation manifold x
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looked at as a moving three-dimensional manifold. So, in 
3
R  we have 

  

  

x =
a

i
h + b

i
t

h2
+ t2

,

y =
b

i
h ! a

i
t

h2
+ t2

,

u = h,

"

#

$
$
$

%

$
$
$

         (23) 

where t  is a time parameter. 

 It should be noted that there is only one spatial parameter 
in (23), h . This implies that irreducible components 

i
!  of 

correlated manifold x
! are spatial curves. To get a better 

understanding of how they move, the curves are shown as 
surfaces which they form as they move in 3

R , for  t ∈ [0,20]. 

In Fig. (1) illustrating the case where n = 6 we can see five 
various irreducible submanifolds.  

 
 
 
 
 

 

 

 

 

 

Fig. (1). The reducible zero-correlation manifold (23) as a paramet-
ric function of spatial parameter h ∈ [10,20] and time parameter t ∈ 
[0,20]. 

Example 2 

 Let us consider a random polynomial of the first degree 
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and therefore is irreducible too. 

 Fig. (2) shows a zero-correlation manifold obtained for 
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or, in a parametric form: 
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 If t is a time parameter, then zero-correlation manifold 
x

!  is given by: 
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where h  is a spatial parameter. 

 In the following section we are going to look at how 
polynomial statistics can be applied for solving the blind 
identification problem. 

III. IMPULSE RESPONSE CHANNEL IDENTIFICA-
TION BY GIVEN CORRELATION MANIFOLDS 

 Now we consider approaches to solving the problem of 
blind identification of sequential systems which transmit 
discrete messages with a passive pause (i.e. each data burst is 
separated from the next one by a pause). In this case, the 
system is identifiable blindly because its input signal is a 
non-stationary random process.  

 For a passive pause system a channel model can be de-
scribed by a linear combination of polynomials of positive 
degree: 
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 In case where the information sequence statistics is not 
known for sure we can use zero-correlation manifold struc-
ture for blind identification. If the noise statistics is known, 
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Fig. (2). The irreducible zero-correlation manifold (27) as a parametric function of spatial parameter h ∈ [10,20] and time parameter t ∈ 
[0,20]. 
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sponse from those generated by information sequence that is 
the dimension of manifolds. We are going to take advantage 
of this property. 

 Zero-correlation manifold 
  
!

k ,m

h
0( )  is generated by a 

finite point set in C (zero-dimensional manifold in 2
C R= ) 

and appears to be a union of complex hyperplanes in r
C . 

Manifold 
  
!

k ,m

x
0( )  usually has dimension 1 inC . In case of 

independent identically distributed samples of the informa-
tion sequence this manifold is a union of complex hypersur-
faces in r

C . We can, therefore, distinguish between un-
known manifolds as long as they have different dimensions; 
the difference becomes obvious as we make various cross-
cuts. For   r = 2  the blind identification algorithm (А1) con-
sists of the following sequence of operations:  

1.  Estimate polynomial covariance 
  
P̂

2,0

y
z

1
, z

2( )  on the ba-

sis of M  representations of the output signal. 

2.  Calculate vectors with one variable polynomial roots, 

   
r

1
= roots P̂

2,0

y
z

1
, z

2

1( )( )  and  

   
r

2
= roots P̂

2,0

y
z

1
, z

2

2( )( ) , z
2

1
! z

2

2 . 

3.  Using criterion
  
r

1
! r

2
" # $ 2( ) , form vector 

  
r

h
 which 

contains L  nearest roots in planeC . 

4.  Find the estimate 
   
ĥ = roots

!1
r

h
( ) . 

 Generally, for 2r >  the algorithm applied to discern 
manifolds remains basically the same. The projection 
r
C C!  of impulse response generated manifold 

  
!

k ,m

h
0( )on the first coordinate axis has zero dimension 

inC , whereas the projection of manifold 
  
!

k ,m

x
0( )  generated 

by information sequence has dimension no less than 1 inC . 

 Zero-correlation manifolds 
  
!

k ,m

y"v
0( ) obtained by using 

this algorithm for the reducible (23) and irreducible (27) 
input sequence polynomials ( ) [ ]x z C z!  from examples 1 
and 2 are shown in Figs. (3 and 4), respectively. The estima-
tions are based on the assumption that the channel impulse 
response polynomial is a first-degree determinate polynomial 

0 1( )h z h h z= +  with complex coefficients 
  
h

0
= 1! j and h

1
= 2 + 3 j and 

  
h

0
= 1! j and h

1
= 2 + 3 j , which has a single root, 

  

!
h

0

h
1

=
1

13
+

5

13
j . 

 
 

 

 

 

 

 

 

 

 

 
Fig. (3). The manifold of observed signal ( ) [ ]y z C z!  without noise for reducible zero-correlation manifold (23) of input signal ( ) [ ]x z C z! . 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (4). The manifold of observed signal ( ) [ ]y z C z!  without noise for irreducible zero-correlation manifold (27) of input signal ( ) [ ]x z C z! . 
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Thus, the zero-correlation manifold generated by ( )h z looks 
like this:  

 

  

!
1,1,0,0

h 0( ) = (z
1
, z

2
)"C : K

1,1,0,0

h
z

1
, z

2( ) = 0{ } =
= (z

1
, z

2
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1
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2
) = 0{ } ,

      (34) 
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'
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2
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h
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h
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            (35) 

 If we look at manifold projections onto complex 
planeC , we will see a number of points in the case of sub-
manifold 

  
!

1,1,0,0

h
0( )"C

2 generated by channel pulse re-
sponse, and a number of curves in the case of manifold 

  
!

1,1,0,0

x
0( )"C

2 of information sequence. These objects are 
clearly seen in Figs. (3 and 4) at the intersection of complex 
plane C and manifolds. It is worth noticing that, whatever 
the secant plane is, a vertical straight line 

2

h
!  always pro-

jects onto a point (i.e. a zero-dimensional manifold inC ), 
whereas a surface 

  
!

x
0( )  generated by input signal 

  
x(z)!C[z]  always projects into a number of curves (a 
first- dimensional manifolds inC ).  

 In case of prior knowledge of the input signal statistics a 
blind identification algorithm can be developed using di-
rectly a given correlation manifold structure of a random 
polynomial. Let 

 
x z( ) !

 
C z!" #$  be a random polynomial of 

degree 1n !  specified by random Gaussian vector n
R!x  

with zero probabilistic average, independent components and 
variance of components 2! . Then a manifold with a given 
correlation of random polynomial values looks as follows:  

  
!

1,0,1,0

x
t( ) = z

1
, z

2( )"C
2

: z
1
z

2

* =#
i

t( ) ,   i = 1,n $1{ } ,   (36) 

where 
1 1
,...,

n
! ! "  are roots of polynomial 

  
P x( ) = (1! t " 2 )+ x + x

2 + ...+ x
n!1 .  

 Let us now look at the case where points are chosen so 
that pair correlations 

,i j
t  of components are nonvanishing 

and not equal to each other; in other words, they may belong 
to different manifolds with a given correlation.  

 Let us assume that 
1 1
,...,

n
! ! "  are roots of polynomial 

 
P x( ) . It is possible to demonstrate that, as long as 

  
t
i, j
! 0,  

no pair of these roots belongs to
  
!

1,0,1,0

x
0( ) . It means that the 

second mixed cumulant has the following form: 

 

  

K
1,0,1,0

y !
i
,!

j( )
t

i, j

= h !
i( )h* !

j( ) ,     

i = 1,n "1,     j = 1,n "1,     t
i, j
# 0.

       (37) 

 Thus we can construct a linear mapping of vector 
n

C!x  into vector 1n
C

!
"y , such that its first and second 

covariance matrices have nonzero off-diagonal entries. It 
means that channel estimation, in fact, boils down to finding 
the eigenvector with the maximum eigenvalue [12]. The 
blind identification algorithm (А2), therefore, consists of the 
following sequence of operations: 

 1. Transformation of pair correlations of the output signal 
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            (38) 

where 
   
V

n!1
"

1
,...,"

n!1( )  is a Vandermond 
  

n !1( )" n  ma-

trix, and ky
r

 is a k -th vector of the output signal samples. 

2. Estimation of sample covariation matrix  

 
    

r̂ =
1

M

r
s

k

r
s

k

*

k=1

M

! .          (39) 

3. Calculation of the matrix eigenvector
   
R = r̂

i, j
t

i, j( ) , 
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%
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(
(
(
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r
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*
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r
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4. Calculation of channel pulse response 
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where symbol « # » stands for Moore-Penrose inversion.  

IV. RESULTS OF MATHEMATICAL SIMULATION  

 To evaluate the efficiency of the proposed solution we 
will compare it with a well-known moment method based on 
using cumulant spectrums [9]. It is shown in [13] that blind 
identification of a non-stationary input cannel requires solv-
ing the following algebraic equation for second-order spec-
tral moments:  

   
&Fyy m, n( ) = &H m( )H

*
n( ) &Fxx m ! n( ) + &Fvv m ! n( ) ,    (42) 

 
   

&Fxx m( ) = g
k
2

exp ! j
2"km

N

#

$%
&

'(k=0

N!1
) ,        (43) 

 
   
&F
vv

m( ) = N
0
! m( ) ,          (44) 

where ( )H m&  is a channel transfer function, 

  n = 0, N !1 and m = 0, N !1 .  
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 Second order spectral moments in (42)-(44) are described 
by the following expression: 

    

&F
xy

m, n( ) = E x(k) exp ! j
2"km

N
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.
/
,
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               (45) 

 This expression implies that spectral moments of infor-
mation sequence and noise are known, whereas the spectral 
moment of channel output sample sequence is estimated on 
the basis real observations. Algorithms that solve (42) for an 
unknown transfer function of the channel become easy to 
develop if we assume that equation (42) is true for esti-
mate

  
F̂yy n, m( ) . The algorithm (A3) which uses spectral 

factorization minimizes the root-mean-square error of ran-
dom solutions of (42) as long as the energy of transfer func-
tion is normalized and

   

&Fxx m( ) ! 0 , 

   

Ĥ m( ) = arg min
H

F̂
yy

m,n( )! N
0
" m! n( )

&F
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m! n( )
2

n=0

N!1

#
m=0

N!1

#
$

%

&
&
&

'

' F
xx

*
m! n( )! &H m( )H

*
n( )

2 (
)

.

  (46) 

 It is known that in this case the solution is the eigenvec-
tor corresponding to the maximum eigenvalue of a Hermitian 
matrix. 

 Simulation results for algorithm (A3) are presented in 
Fig. (5). The relative error in this case is given by the for-

mula 
    
Q = E

r
h ! ˆ

r

h
r
h{ } . The pulse response is 

   

r
h = (0,7; 1,0; 0,7) 

   

r
h = (0,7; 1,0; 0,7) for all experiments. Fig. (6) shows the mathemati-

cal simulation results for blind channel identification algo-
rithm (A1), in which the channel is identified by two cross-
cuts of zero-correlation manifold 

  
V

2,0

y!v
0( )" C

2 . In this case 

the two cutting planes are 
  

z
2

1 = 1{ }! C
2  and 

  
z

2

2 = 0,9{ }! C
2 . 

 In comparison with algorithm (А3) algorithm (A1) is 
characterized by lower noise immunity for small values of 
noise-to-signal ratio. For a fixed sample noise immunity 
tends to zero. One important advantage of algorithm (A1) is 
the absence of the need to know information sequence statis-
tics. Another important advantage is high rate of conver-
gence. Thus, even for high noise-to-signal ratio (А1) pro-
vides acceptable error after just a few runs (N=3 to 5).  

 The simulation results for algorithm (A2) are presented 
in Fig. (7). The noise immunity of this algorithm is higher 
than that of algorithm (А3), whereas their rates of conver-
gence are approximately the same. The use of nonzero corre-
lation transformation provides for high noise immunity. The 
algorithm is, therefore, characterized by good matrix condi-
tioning, unlike the algorithm based on spectral factorization 
where the condition 

   

&Fxx m( ) ! 0  is not met. The above-

mentioned algorithms have approximately the same level of 
computational complexity. 

CONCLUSION 

 The use of polynomial representations of random vectors 
resulted in a number of new blind channel identification al-
gorithms based on methods of commutative algebra and al-

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Identification relative error Q  of algorithm (А3) as a function of noise-to-signal ratio NSR, when a number of realizations N: 
N=20 («+»), N=40 («o»), N=60 («*»), N=80 («×»). 
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gebraic geometry. This paper demonstrates that manifolds 
generated by polynomial cumulants have a number of unique 
properties. For example, zero-correlation manifolds gener-
ated by random sequences transmitted through a determinate 
channel can be identified based on the number of dimensions 
they have, which means that blind channel identification is 
possible even in the absence of prior knowledge of input 
statistics. 
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