
 The Open Statistics and Probability Journal, 2009, 1, 32-37 32 

 2
 1876-5270/09 2009 Bentham Open 

Open Access 

Normal Distribution Type Symmetry Model for Square Contingency  
Tables with Ordered Categories 

Kouji Tahata, Kouji Yamamoto* and Sadao Tomizawa 

Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda City, 

Chiba, 278-8510, Japan 

Abstract: For square contingency tables with ordered categories, this paper proposes a model that the cell probabilities 

have a similar structure of bivariate normal density function with equal marginal variances.  

The proposed model is special cases of Agresti's linear diagonals-parameter symmetry model and Goodman's diamond 

model. Examples with real data are given and the simulation studies based on the bivariate normal distribution are also 

given. 

Key Words: Diamond model, Linear diagonals-parameter symmetry, Normal distribution, Ordered category. 

1. INTRODUCTION  

 Consider an  r r  square contingency table with the 

same ordinal row and column classifications. Let 
 
p

ij
 denote 

the probability that an observation will fall in the ith row and 

jth column of the table (
   
i = 1,…, r; j = 1,…, r ). Agresti [1] 

proposed the linear diagonals-parameter symmetry (LDPS) 

model defined by 

 

  

p
ij

p
ji

=
j i (i < j) . 

 A special case of this model obtained by putting  = 1  is 

the usual symmetry model (see, for example, Bowker [2]; 

Bishop, Fienberg and Holland [3, p. 282]). This indicates 

that the probability that an observation will fall in the 

  
(i, j) th cell, 

 
i < j , is  

j i  times higher than the probability 

that it falls in the 
  
( j, i) th cell. 

 Goodman [4] proposed the diagonals-parameter symme-

try (DPS) model defined by 

 

  

p
ij

p
ji

=
j i

(i < j) . 

 Note that the LDPS model is a special case of the DPS 

model obtained by putting 
  
{

j i
=

j i} . 

 Consider the random variables 
  
X

1
 and 

  
X

2
 having a bi-

variate normal distribution with means 
  
E( X

1
) = μ

1
 and  
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E( X

2
) = μ

2
, variances 

  
Var( X

1
) = Var( X

2
) = 2

, and corre-

lation 
  
Corr( X

1
, X

2
) = , which have the density function 

  
f (x

1
, x

2
) . Then we see 

 

  

f (x
1
, x

2
)

f (x
2
, x

1
)
= exp

(x
2

x
1
)(μ

2
μ

1
)

(1 ) 2
. 

 Agresti [1] pointed out that the 
  
f (x

1
, x

2
) / f (x

2
, x

1
)  has 

the form   
x

2
x

1  for some constant , and hence the LDPS 

model may be appropriate for a square ordinal table if it is 

reasonable to assume an underlying bivariate normal distri-

bution with equal marginal variances (see also Tomizawa 

[5]; Yamamoto, Iwashita and Tomizawa [6]). 

 Goodman [7] proposed the diamond (DD) model defined 

by 

 
   
p

ij
=

i j i+ j
(i = 1,…, r; j = 1,…, r) ; 

see also Tomizawa [8]. The DD model states that there is a 

structure of quasi-independence between the difference-

diagonal classification (i.e., the difference between the row 

and column classifications) and the sum-diagonal classifica-

tion (i.e., the sum between the row and column classifica-

tions).  

 Under the DD model we see 

 

  

p
ij

p
ji

=
i j

j i

(i < j) . 

 Therefore the DD model is a special case of the DPS 

model. 

 By the way, the density function 
  
f (x

1
, x

2
)  further can be 

expressed as 
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f (x

1
, x

2
) = ca

1

( x
1

x
2

)2

a
2

x
1

x
2 b

1

( x
1
+x

2
)2

b
2

x
1
+x

2 ,          (1) 

where 

 

  

c =
1

2 2 1 2
exp

(μ
1

μ
2
)2

4 2 (1 )

(μ
1
+ μ

2
)2

4 2 (1+ )
,

a
1
= exp

1

4 2 (1 )
,

a
2
= exp

μ
1

μ
2

2 2 (1 )
,

b
1
= exp

1

4 2 (1+ )
,

b
2
= exp

μ
1
+ μ

2

2 2 (1+ )
.

 

 Thus, the density function 
  
f (x

1
, x

2
)  has the form 

  
g(x

1
x

2
)h(x

1
+ x

2
)  and hence the DD model also may be 

appropriate for a square ordinal table if it is reasonable to 

assume an underlying bivariate normal distribution with 

equal marginal variances. 

 We are now interested in considering a model such that 

the cell probabilities 
  
{p

ij
}  themselves have a similar struc-

ture of bivariate normal density function with the form of 

equation (1). 

 The purpose of this paper is to propose a new model 

which may be appropriate for a square ordinal table if it is 

reasonable to assume an underlying bivariate normal distri-

bution with equal variances.  

 The new model is different from the LDPS and DD mod-

els (Section 2). 

2. NORMAL DISTRIBUTION TYPE SYMMETRY 

MODEL 

 For an  r r  square table, consider a new model defined 

by 

 
   
p

ij
=

1

( i j )2

2

i j

1

( i+ j )2

2

i+ j (i = 1,…, r; j = 1,…, r).      (2) 

 It is easily seen that model (2) is a special case of the DD 

model because model (2) is expressed by using parameters 

dependent on the terms 
  
(i j)  and 

  
(i + j) . 

 Since model (2) is similar to the form (1), we shall refer 

to model (2) as the normal distribution type symmetry 

(NDS) model. For the  r r  table, let  X  and  Y  denote the 

row and column variables, respectively. Under the NDS 

model we see 

 

  

p
ij

p
ji

=
2

2( )
i j

(i > j) . 

 Therefore this model also has the structure of the LDPS 

model. So, the NDS model is also a special case of the LDPS 

model. Namely, under the NDS model we see that the prob-

ability that an observation will fall in the 
  
(i, j) th cell, 

 
i > j , 

is 
  2

2( )
i j

 times higher than the probability that it falls in the 

  
( j, i) th cell. Also, under the NDS model, 

 2
> 1  is equiva-

lent to 
  
P( X i) < P(Y i) , 

   i = 1,…, r 1 . Thus, the pa-

rameter 
 2

 in the NDS model would be useful for making 

inferences such as that  X  is stochastically greater than  Y  or 

vice versa. 

 Let  
*
 denote the 

  
(2r 1) (2r 1)  table of the dia-

mond shape formed by rotating the  r r  table based on the 

probabilities forty-five degrees. Table 1 shows the table  
*
 

formed by rotating the original  4 4  table forty-five de-

grees. Generally, we could consider the 
  
(2r 1) (2r 1)  

table of the diamond shape formed by rotating the original 

 r r  table forty-five degrees so that the   2r 1  difference-

diagonals in the original table now form the entries in the 

rows of the diamond, and the corresponding   2r 1  sum-

diagonals in the original table form the entries in the col-

umns of the diamond. Let  U = X Y  and  V = X + Y . Also 

let   S
*

 denote a set of cells of the diamond shape in the 

  
(2r 1) (2r 1)  table. Thus, 

   
S

*
= (u,v) | u = i j,v = i + j for  i = 1,…, r; j = 1,…, r{ } . 

 

Table 1. Table 
*
 Formed by Rotating the Original 4 x 4  

Table. Note that pij = p*uv with u = i – j and v = i + j 

V (= X + Y) 

U (= X - Y) 

2 3 4 5 6 7 8 

-3 * * * p14 * * * 

-2 * * p13 * p24 * * 

-1 * p12 * p23 * p34 * 

0 p11 * p22 * p33 * p44 

1 * p21 * p32 * p43 * 

2 * * p31 * p42 * * 

3 * * * p41 * * * 

 

 Let 
  
p

uv

*
 denote the corresponding probability for row 

value  u  and column value  v , 
  
(u,v) S

*
, in the 

  
(2r 1)  

(2r 1)  table; i.e., 

 

  

p
uv

*
= p

u+v

2
,
v u

2

((u,v) S
* ) . 

 The NDS model may be expressed as 

 
  
p

uv

*
=

1

u
2

2

u

1

v
2

2

v ((u,v) S
* ) . 

 Therefore under this model we see that there is a struc-

ture of quasi-independence between the difference-diagonal 
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classification (i.e., the difference between the row and col-

umn classifications,  U = X Y ) and the sum-diagonal clas-

sification (i.e., the sum between the row and column classifi-

cations,  V = X + Y ). 

 The NDS model states that (1) when  V  ( = X + Y ) is 

fixed as  V = v , log-probability (
  
log p

uv

*
) is a quadratic func-

tion of  U  ( = X Y ) and (2) when  U  is fixed as  U = u , it 

is a quadratic function of  V . In addition, (1) if 
 1

> 1  and 

 2
> 1 , the probability 

  
p

uv

*
 for   u 0  increases as the value 

of  U  increases when the value of  V  is fixed, and (2) if 

 1
> 1  and 

 2
> 1 , the probability 

  
p

uv

*
 increases as the value 

of  V  increases when the value of  U  is fixed. 

 The NDS model may be appropriate for a square ordinal 

table if it is reasonable to assume an underlying bivariate 

normal distribution with equal marginal variances. The fact 

is shown in Section 5 in terms of the simulation studies. For 

some details, see Section 5. 

 Also, a special case of the NDS model obtained by put-

ting 
 2

= 1  may be appropriate for a square ordinal table if it 

is reasonable to assume an underlying bivariate normal dis-

tribution with equal marginal means and equal marginal 

variances. 

3. GOODNESS-OF-FIT TEST 

 Let 
ij

n  denote the observed frequency in the 
  
(i, j) th cell 

of the table (
   
i = 1,…, r; j = 1,…, r ). Assume that a multino-

mial distribution applies to the r r table. The maximum 

likelihood estimates of expected frequencies under the NDS 

model can be easily obtained using an iterative procedure, 

for example, the general iterative procedure for log-linear 

models of Darroch and Ratcliff [9]. 

 We shall consider the case where the sample size is large. 

The likelihood ratio statistic for testing the goodness-of-fit of 

a model symbolized by  M  is 

 

  

G
2 ( M ) = 2 n

ij
log

n
ij

m̂
ijj=1

r

i=1

r

, 

where 
  
m̂

ij
 is the maximum likelihood estimate of expected 

frequency 
ij

m  under model  M . The number of degrees of 

freedom for the NDS model is   r
2

5 . 

 Consider two nested models, say 
  
M

1
 and 

  
M

2
, such that 

model 
  
M

2
 is a special case of model 

  
M

1
, so when 

  
M

2
 

holds, necessarily 
  
M

1
 also holds. For example, 

  
M

2
 is the 

NDS model and 
  
M

1
 is the DD model. Let 

 1
 and 

 2
 denote 

the degrees of freedom for models 
  
M

1
 and 

  
M

2
, respec-

tively. Note that 
 1

<
2

 and 
  
G

2 ( M
1
) G

2 ( M
2
) . For testing 

that model 
  
M

2
 holds assuming that model 

  
M

1
 holds, we 

can use the likelihood ratio statistic 
  
G

2 ( M
2

| M
1
) , where 

  
G

2 ( M
2

| M
1
) = G

2 ( M
2
) G

2 ( M
1
) . Under the null hypothe-

sis this test statistic has an asymptotic chi-square distribution 

with 
 2 1

 degrees of freedom. 

 We note that (1) the NDS model implies the LDPS 

model, (2) the LDPS model implies the DPS model, (3) the 

NDS model also implies the DD model, and (4) the DD 

model implies the DPS model. 

 The readers may be interested in the case where the sam-

ple size is small. In such a case, we may be interested in con-

sidering the exact test. However, it may be difficult to con-

sider the exact test for goodness-of-fit of the NDS model. In 

this paper, we focus on not testing goodness-of-fit for some 

models, but proposing a new model. Thus, although we do 

not discuss on the exact test in detail, for the exact test, for 

example, Aaberge [10] and Aaberge and Zhang [11]. 

4. AN EXAMPLE 

 Table 2 taken from Tomizawa, Miyamoto and Iwamoto 
[12] is the data of the decayed teeth of 363 women aged 
from 18 to 39 for the patients visiting a dental clinic in Sap-
poro City, Japan, from 2001 to 2005. Table 3 shows the table 
of the diamond shape formed by rotating the original table. 
 

Table 2. Decayed Teeth Data of 363 Women Aged 18-39, for 

Patients Visiting a Dental Clinic in Sapporo City, 

Japan, from 2001 to 2005; from Tomizawa et al. 

[12]. (The Parenthesized Values are the Maximum 

likelIhood Estimates of Expected Frequencies Under 

the NDS Model) 

Right (Numbers of Decayed Teeth) 
Left (Numbers of 

Decayed Teeth) 
0-4 (1) 5-8 (2) 9+ (3) 

Total 

0-4 (1) 
103 

(103.41) 

45 

(45.46) 

1 

(2.72) 
149 

5-8 (2) 
35 

(33.53) 

84 

(84.40) 

33 

(28.90) 
152 

9+ (3) 
3 

(1.48) 

17 

(21.31) 

42 

(41.79) 
62 

Total 141 146 76 363 

 

Table 3. Table of the Diamond Shape Formed by Rotating 

Table 2 

Left Plus Right 
Left Minus  

Right 
2 3 4 5 6 

-2 * * 1 * * 

-1 * 45 * 33 * 

0 103 * 84 * 42 

1 * 35 * 17 * 

2 * * 3 * * 
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 From Table 4, we see that each model fits these data, and 

especially the NDS model is preferable to the other models 

in terms of likelihood ratio tests. Note that for the  3 3   

table, the DD model is equivalent to the DPS model. 

 

Table 4. Likelihood Ratio Statistic G
2
 Values for Models  

Applied to Table 2 

Applied Models Degrees of Freedom G
2
 

NDS 4 4.21 

LDPS 2 4.18 

DD 1 1.23 

DPS 1 1.23 

 

 Under the NDS model, the values of maximum likeli-

hood estimates of parameters are 
 
ˆ

1
= 0.393 , 

 
ˆ

2
= 0.859 , 

 

ˆ
1
= 0.939  and 

 

ˆ
2
= 1.314 . Therefore, under the NDS 

model, the probability that the number of decayed teeth in 

the right side of the mouth of a patient is 
 
j  and that in the 

left side is  i  ( 
< j ), is estimated to be 

  
(1.356) j i

 

(
  
= 1 / ˆ

2

2( )
j i

) times higher than the probability that the 

number of decayed teeth in the right side of the patient is  i  

and that in the left side is 
 
j . Since 

 
ˆ

2
< 1 , the number of 

decayed teeth in the right side of the mouth of a patient tends 

to be more than that in the left side. 

 Also, the NDS model indicates that the total number of 

decayed teeth in the right and left sides of a patient is not 

associated with the difference between the number of  

decayed teeth in the right side and that in the left side of the 

patient. 

5. SIMULATION STUDIES 

 As described in Section 2, the NDS model may be appro-

priate for a square ordinal table if it is reasonable to assume 

an underlying bivariate normal distribution with equal mar-

ginal variances. We shall now consider the simulation stud-

ies based on the bivariate normal distribution. Consider ran-

dom variables 
  
Z

1
 and 

  
Z

2
 having a joint bivariate normal 

distribution with means 
  
E(Z

1
) = μ

1
 and 

  
E(Z

2
) = μ

2
, vari-

ances 
  
Var(Z

1
) = Var(Z

2
) = 2

, and correlation 

  
Corr(Z

1
, Z

2
) = . Suppose that there is an underlying  

bivariate normal distribution and suppose that a  4 4  table 

is formed using cutpoints for each variable at 
 
μ

1
, 

 
μ

1
± 0.6 . 

Then, in terms of simulation studies, Table 5 gives a  4 4  

table of sample size 500, formed from an underlying bivari-

ate normal distribution with the conditions 
 1

2
=

2

2 (= 2 ) , 

 
μ

2
= μ

1
+ 0.4 , and 

 
= 0.3 . The NDS model fits these data 

well, yielding the likelihood ratio statistic   G
2
= 7.56  with 

11 degrees of freedom. Thus, the NDS model may be appro-

priate for a square ordinal table if it is reasonable to assume 

an underlying bivariate normal distribution with equal mar-

ginal variances. 

 As described in Section 1, the DD model may also be 

appropriate for a square ordinal table if it is reasonable to 

assume an underlying bivariate normal distribution with 

equal marginal variances. Actually, the DD model fits the 

data in Table 5 well, yielding the likelihood ratio statistic 

  G
2
= 1.04  with 4 degrees of freedom. However, according 

to the test based on the difference between the   G
2

 values for 

the NDS and DD models, (since the   G
2

 value is not signifi-

cant at the 0.05 level under the assumption that the DD 

model holds), the NDS model is preferable to the DD model. 

 

Table 5. The 4 x 4 table of sample size 500, formed by using 

cutpoints for each variable at μ1, μ1 + 0.6 , from an 

underlying bivariate normal distribution with equal 

marginal variances and conditions μ2 = μ1 + 0.4,  = 

0.3. (The parenthesized values are the maximum 

likelihood estimates of expected frequencies under 

the NDS model.) 

Z2 

Z1 

(1) (2) (3) (4) 

Total 

(1) 
42 

(37.00) 

24 

(30.03) 

33 

(31.62) 

42 

(43.21) 
141 

(2) 
15 

(17.92) 

20 

(18.46) 

21 

(24.66) 

45 

(42.75) 
101 

(3) 
11 

(11.26) 

14 

(14.72) 

33 

(24.95) 

56 

(54.87) 
114 

(4) 
12 

(9.19) 

12 

(15.23) 

30 

(32.75) 

90 

(91.38) 
144 

Total 80 70 117 233 500 

 

 By the way, as described in Section 1, the LDPS model 

may give a good fit when there is an underlying bivariate 

normal distribution with equal marginal variances. In fact, 

the LDPS model fits the data in Table 5 well, yielding the 

likelihood ratio statistic   G
2
= 2.00  with 5 degrees of free-

dom. However, according to the test based on the difference 

between the   G
2

 values for the NDS and LDPS models, 

(since the   G
2

 value is not significant at the 0.05 level under 

the assumption that the LDPS model holds), the NDS model 

is preferable to the LDPS model. Thus, it may be preferable 

to assume the bivariate normal distribution on 
  
{p

ij
}  rather 

than 
  
{p

ij
/ p

ji
} . 

 In addition, consider the data in Table 6. Table 6 gives 

the simulated  4 4  square table of sample size 500 based on 
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the bivariate normal distribution with equal marginal vari-

ances and conditions 
 
μ

1
= μ

2
, 

 
= 0.3 . The NDS model fits 

these data well, yielding the likelihood ratio statistic 

  G
2
= 7.35  with 11 degrees of freedom. Under the NDS 

model applied to these data, the maximum likelihood esti-

mates of 
 1

, 
 2

, 
 1

 and 
 2

 are 
 
ˆ

1
= 0.976 , 

 
ˆ

2
= 1.002 , 

 

ˆ
1
= 1.081  and 

 

ˆ
2
= 0.465 . Hence, we see that 

 
ˆ

2
 is very 

close to 1. As described in Section 2, a special case of the 

NDS model obtained by putting 
 2

= 1  may be appropriate 

for a square ordinal table if it is reasonable to assume an un-

derlying bivariate normal distribution with equal marginal 

means and equal marginal variances. 
 

Table 6. The 4 x 4 Table of Sample Size 500, Formed by  

Using Cutpoints for Each Variable at μ1, μ1 + 0.6 , 

from an Underlying Bivariate Normal Distribution 

with Equal Marginal Means and Equal Marginal 

Variances and  = 0.3. (The Parenthesized Values 

are the Maximum Likelihood Estimates of Expected 

Frequencies Under the NDS Model) 

Z2 

Z1 

(1) (2) (3) (4) 

Total 

(1) 
57 

(51.24) 

32 

(34.23) 

27 

(25.44) 

17 

(21.05) 
133 

(2) 
27 

(34.36) 

30 

(28.13) 

30 

(25.63) 

31 

(26.00) 
118 

(3) 
22 

(25.65) 

25 

(25.74) 

26 

(28.75) 

32 

(35.73) 
105 

(4) 
23 

(21.31) 

31 

(26.21) 

36 

(35.88) 

54 

(54.65) 
144 

Total 129 118 119 134 500 

 

 In addition, we perform many simulation studies under 

some conditions. For example, on conditions 
 
μ

2
= μ

1
+ 0.2 , 

 1

2
=

2

2
, 

 
= 0.2  and sample size 1000, the hypothesis that 

the NDS model holds is accepted 91 times per 100 times (at 

the 0.05 significant level), and also on conditions 

 
μ

2
= μ

1
+ 0.4 , 

 1

2
=

2

2
, 

 
= 0.3  and sample size 1000, that 

is accepted 94 times per 100 times. As a result of these many 

simulation studies, the NDS model tends to give a good fit 

when the marginal means are not so different and the corre-

lation is not so large. However, it may be difficult to provide 

a limitation of difference between marginal means and value 

of correlation. 

6. DISCUSSION 

 We have proposed the NDS model such that the cell 

probabilities 
  
{p

ij
}  themselves have a similar structure of 

bivariate normal density function. 

 The NDS model is useful for making inferences such that 

the row variable X  is stochastically greater than the column 

variable  Y  or vice versa, according to 
 2

> 1  or 
 2

< 1 . In 

addition, under the NDS model, (i) if 
 1

> 1  and 
 2

> 1 , the 

cell probability 
 
p

ij
, 

 
i j , tends to increase as the difference 

 
i j  increases, when the sum 

 
i + j  is constant, and (ii) if 

 1
> 1  and 

 2
> 1 , the cell probability 

 
p

ij
 tends to increase 

as the sum 
 
i + j  increases, when the difference 

 
i j  is con-

stant. 

 Finally, from Section 5 and many simulation studies, we 

can state that the NDS model may be appropriate for a 

square ordinal table if it is reasonable to assume an underly-

ing bivariate normal distribution with equal marginal vari-

ances. In addition, when the marginal means equal, the NDS 

model with 
 2

= 1  would give a good fit to such data. As 

described in Section 5, it may be difficult to provide a clear 

guidance to use the NDS model. However, for analyzing a 

real contingency table data, if we may assume an underlying 

bivariate continuous distribution, it may be useful to apply 

the NDS model. 
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