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Abstract: Measurement of closeness between homologous configurations is often of interest. For configurations that can 

be embedded onto the Euclidean space, we attempted to develop closeness coefficients between corresponding Euclidean 

coordinate matrices. A suitable closeness coefficient was required to satisfy the following five properties: 1) It must range 

between 0 and 1; 2) It must be invariant over translation, rotation and dilation of coordinate matrices, namely, TRD-

invariance; 3) It must be one between equivalent coordinate matrices; 4) It must be zero between coordinate matrices 

whose corresponding configurations are orthogonal; and 5) It must be symmetric between any pair of coordinate matrices. 

We showed that the following two closeness coefficients derived based on different approaches were equivalent and both 

satisfied the five required properties: 1) a goodness of fit coefficient GF based on minimum distance fitting of coordinate 

matrices by translation, rotation and dilation; and 2) the Gower-Lingoes-Schönenman coefficient RGLS based on the 

maximum of correlations of coordinate matrices over rotation. In addition, the Escoufier’s RV coefficient was also shown 

to satisfy all the five properties. Finally, RGLS, or equivalently GF, and RV were all shown to be a function of centered 

forms or singular values of coordinate matrices. 
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1. INTRODUCTION  

 Comparison between pairs of configurations can be made 

in terms of goodness of fit based on Procrustes methods [1, 

2] or matrix correlations [3]. For instance, it may be of inter-

est to measure how closely distinctive patterns of psychiatric 

disorders are fitted by a lower-rank approximation of a sam-

ple data matrix [4, 5] or to measure association between  

annual precipitations and geographical locations [6]. Re-

cently, such interest extends to the area of bioinformatics; for 

instance, comparison of high-dimensional genomic data [7] 

and protein data [8]. Nevertheless, to our knowledge, a rig-

orous attempt has not been made to develop a closeness co-

efficient to measure such association between homologous 

configurations. In particular, properties required for a close-

ness coefficient have not been discussed. To this end, we 

introduced five properties that must be satisfied by a close-

ness coefficient. We also introduced a definition of orthogo-

nality between homologous configurations that is necessary 

for satisfying a property.  

 The objective of this paper is to develop a closeness coef-

ficient between homologous configurations. We considered 

only homologous configuration that are embeddable onto the 

Euclidean space. To this end, we first defined Euclidean-  
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embeddable configurations and then their corresponding 

Euclidean coordinate matrices in section 2. In section 3, we 

discussed unique representations of those coordinate matri-

ces and introduced the concept of invariance under transla-

tion, rotation, and dilation (TRD-invariance). In section 4, 

we introduced a notion of orthogonality between configura-

tions and between their corresponding uncorrelated coordi-

nate matrices. In section 5, five properties that a closeness 

coefficient must satisfy are introduced. In section 6, we de-

veloped a closeness coefficient through application of a Pro-

crustes fitting method to approximate coordinate matrices to 

each other as closely as possible by means of translation, 

rotation and dilation. In section 7, we examined maximiza-

tion of correlations between coordinate matrices over rota-

tion. In section 8, we examined correlations between coordi-

nate matrices that are uniquely represented through centered 

forms or singular values of coordinate matrices. Discussion 

follows in section 9.  

2. CONFIGURATION AND COORDINATE MATRIX 

 A configuration C is a set of ordered elements 1, …, n 

corresponding to a collection of given distances ie, i, e=1, 

..., n between all pairs of the objects. The inter-object dis-

tances  should satisfy that: (1) ie  0 for all i, e with equal-

ity if i = e; (2) ie = ei for all i and e; (3) ie  ij + je for all 

i, j, and e. Therefore, C  C( , ) is a function of both a set  

= { 1, …, n} of the ordered objects and a set  = { ie, 

i,e=1,...,n}of the inter-object distances.  
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 Two configurations for the same objects, C1 = C( 1, 1) 

and C2 = C( 2, 2), are homologous if there exists a one-to-

one association between the ordered elements of 1 and 2. 

For example, both 1 and 2 represent geographical coordi-

nates of certain locations, while 1 in C1 and 2 in C2 repre-

sent sets of geographical distances and differences in annual 

precipitations, respectively, between the locations [6]. In this 

paper, we only consider such homologous configurations and 

therefore consider a single set  as given. This reduces the 

configurations to a function of distances  only and enables 

to write C  for C( , ). 

 To develop a closeness coefficient between homologous 

configurations, we embed configurations onto a space de-

fined by coordinates xi associated with each element i, i 

=1,..., n. The n-rowed matrix X = ((xij)) with the i-th row 

vector
T

i
x =(xi1, xi2, …, xiJ) for some J is a list of the coordi-

nates of all the elements of , where ((xij)) denote a matrix 

whose ij-th element is xij. The relation between the coordi-

nates X of  and the configuration C  depends on a norm 

which equates the distances between coordinates xi and xe 

with the distances ie between elements i and e. To this 

end, we consider only the Euclidean norm || || in this paper. A 

configuration C  is said to be Euclidean embeddable if and 

only if there exists X such that d(X) = , where d(X) = {||xi - 

xe||, i, e=1,...,n} is the set of Euclidean distances measured by 

the Euclidean norm || || between all pairs of the coordinates 

of the elements in . Any such X is called a (Euclidean) 

coordinate matrix of C . 

 For a given C , however, its associated coordinate matri-

ces are not unique but there exist a collection of coordinate 

matrices denoted by M  = {X| d(X) = }, where {e| c} repre-

sents a set of elements e that satisfy condition c. Further-

more, for a given set  of distances, there exists a class of 

configurations denoted by C ={C  | = } in which nor-

malized distances of every configuration are identical to the 

given normalized distances . By this definition, 

= if and only if there exists a non-zero scalar  such that 

 = . The normalization was considered because a close-

ness coefficient must be invariant over dilation and thus it is 

unnecessary to distinguish configurations whose distances 

are proportional to one another.  

 In that context, configurations 
1

C and 
2

C  are said to be 

equivalent if they belong to the same class, i.e., if 
1 2
= . 

Correspondingly, a class of collections of coordinate matri-

ces of a configuration class C , denoted by M ={M  | 

= }= {X | ( )d =X }, in which normalized inter-row 

distances ( ) ( ) ( )d d dX X X  of any X are identical to the 

given normalized inter-object distances . Subsequently, 

coordinate matrices X and Y are said to be equivalent if they 

belong to the same class, i.e., if ( )d X  = ( )d Y . 

3. UNIQUE REPRESENTATIONS OF CONFIGURA-

TIONS AND TRD-INVARIANCE 

 For a configuration C , the n-by-n matrix with (i, e)-th 

element ie
2
 is the squared distances matrix denoted by 

 

2
= 

(( ie
2
)). This matrix is uniquely related to the configuration, 

since  uniquely defines C . Similarly, the elements of d(X) 

can be arrayed in the squared distances matrix D
2
(X) = ((||xi - 

xe||
2
)). This matrix can be expressed as a function of the co-

ordinate matrix X through XX
T
, which is referred to as its 

form [2], in the following way [9]:  

D
2
(X) = Diag(XX

T
)11

T
 + 11

T
Diag(XX

T
) 11

T
 - 2XX

T
,        (1) 

where Diag(XX
T
) is the diagonal matrix with the diagonal 

elements ||xi||
2
, i = 1, ..., n, and 1 is a column vector with all n 

components being 1.  

 For a given configuration, the form XX
T
 of its associated 

coordinate matrices X in M  is not unique. It becomes unique 

only if the coordinate matrices are centered. As follows from 

the equation (1), if D
2
(X) = 

 

2
 = D

2
(Y), then we have  

HXX
T
H = -0.5HD

2
(X)H = -0.5H

 

2
H = -0.5HD

2
(Y)H = 

HYY
T
H,              (2) 

where H = I – 11
T
/n is an idempotent column-centering op-

erator such that HH = H, and I is the n-by-n identity matrix. 

In other words, 
 

2
 is a one-to-one function not of XX

T
 but 

of the centered form HXX
T
H. Therefore, the centered form 

is unique for a given squared distances matrix and also for a 

configuration. Furthermore, the centered form HXX
T
H is 

invariant over translation and rotation of X, i.e., TR-

invariant, since H[(X+1
T
)R][(X+1

T
)R]

T
H = HXX

T
H for 

any vector  and any orthonormal matrix R such that RR
T
 = 

R
T
R = I. This TR-invariant property is summarized in the 

following Proposition 1.  

Proposition 1 

 For a given Euclidean embeddable configuration C  , its 

corresponding Euclidean coordinate matrices X and Y, both 

with full affine ranks, belong to the same collection M  if 

and only if there exist a coordinate vector  and an or-

thonormal matrix R such that X = (Y + 1
T
)R.  

Proof 

 If the latter holds, then it is clear that D
2
(X) = D

2
(Y). It 

follows that both X and Y belong to the same M  by defini-

tion. If the former holds, then any pair of coordinate matrices 

X and Y of the same M  must satisfy 
 

2
 = D

2
(X) = D

2
(Y). It 

follows from equation (1) that HXX
T
H = HYY

T
H. There-

fore, the latter holds by the following claim.  

Claim 

 HXX
T
H = HYY

T
H, with X and Y of full affine rank, if 

and only if there exist a coordinate vector  and an or-

thonormal matrix R such that X = (Y + 1
T
)R. 
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Proof 

 It is enough to show that the necessity part holds. Since 

HXX
T
H

svd

=  U
2
U

T
 = HYY

T
H, there exists an orthonormal 

R* such that HX = HYR*. This implies that v((X  YR*)
T
) 

is orthogonal to v(H
T
), where v(.) denotes the column space. 

It follows that X  YR = 1
T
 for some vector . Hence, X = 

(Y + 1
T
)R for some  = R

T
 and orthonormal matrix R. 

QED. 

 In addition, by classical scaling, principal coordinates 

[10] of a configuration can be obtained through the singular 

value decomposition (SVD) [11, 12] of -0.5H
 

2
H. The 

principal coordinates are arrayed in a principal coordinate 

matrix U
1/2

, where -0.5H
 

2
H 

svd

=  U U
T
 [13]. (We de-

note the SVD equation of a matrix X in general by X 
svd

=  

U V
T
, where U

T
U = I, VV

T
 = I, and  is a diagonal matrix 

of the singular values of X.) If there are no multiples of 

same singular values, the principal coordinate matrix U
1/2

 

is unique for a configuration C . 

 For a configuration class, the squared distances matrix 

and the centered form are unique up to a dilation factor. 

However, the normalized squared distances matrices of C  

and of X, 
 

2

= 
  

2
1

T 2
1  and 

  
D

2

X( )  = 

   
D

2 (X) 1
T

D
2 (X)1  respectively, are unique and related 

uniquely to the centered form of 
   
X D

2 (X) 1
T

D
2 (X)1 . 

Therefore, for a configuration class the coordinates allow 

(X + 1
T
)R transformation to be invariant over translation, 

rotation and dilation of any coordinate matrix in 
 
M , i.e., 

TRD-invariant, as summarized in the following proposition, 

which is a natural extension of Proposition 1. Due to the 

equations in (2), both the normalized squared distances ma-

trix and the normalized centered form are also TRD-

invariant. 

Proposition 2 

 For a given Euclidean embeddable configuration C  , its 

corresponding Euclidean coordinate matrices X and Y, with 

the same full affine ranks, belong to the same class of collec-

tions M  if and only if there exist a coordinate vector , a 

non-zero scalar , and an orthonormal matrix R such that X 

= (Y + 1
T
)R; also, if and only if their centered forms sat-

isfy HXX
T
H = HYY

T
H for some non-zero .  

Proof 

 Since both 
  
D

2

X( )  and 
  
D

2

Y( )  are invariant over choice 

of the non-zero dilation factor , the proof of proposition 1 

can naturally be applied after normalization of X and Y. 

QED. 

4. ORTHOGONALITY OF CONFIGURATION 

CLASSES 

 In univariate (or single dimensional) case, as the opposite 

of perfect correlation, there is zero correlation between two 

variates, i.e., lack of association. Analogously, in compari-

son of high-dimensional configurations, the opposite of per-

fect closeness/similarity may be said to be orthogonality 

between configurations
1

C and 
2

C  if univariate correlation 

is zero for every direction in one configuration with every 

direction in the other. Therefore, as summarized in the fol-

lowing Proposition 3, the orthogonality holds if X
T
Y = 0 for 

any X 
1

M and any Y 
2

M  The condition X
T
Y = 0 im-

plies that v(X) is orthogonal to v(Y), i.e., X, Y  = 0, where 0 

= ((0ij)) with 0ij = 0 for all i and j, and X, Y  = 

 

x
ij
y

ji

ji

denotes the inner product of matrices X=((xij)) 

and Y=((xij)).  

Proposition 3 

 Xa and Yb are orthogonal, i.e., Xa, Yb  = 0 for every 

pair of vectors a and b, if and only if X
T
Y = 0, where 0 de-

notes a matrix with all elements zeros.  

Proof 

 If the former holds, then we have 
   

max
a ,b

a
T
X

T
Yb = 0. It 

follows that the first singular value of X
T
Y is zero. The con-

verse is obvious. QED. 

 The orthogonality between configuration classes 
1

C and 

2
C  however, requires that X

T
HY = 0 for any X  

1
M and 

for any Y  
2

M . Specifically, the inner product of X and 

Y are required to be translation invariant. This condition can 

be satisfied if HXa and HYb are orthogonal for every pair of 

a and b. Conversely, if so, then the associated configuration 

classes are orthogonal. Then, Xa and Yb are said to be un-

correlated as summarized in the following Corollary to 

Proposition 3. It should, however, be noted that even if 

X
T
HY = Z

T
HY = 0 for Z 

3
M , it does not necessarily 

follow that 
  
C

1
= 

  
C

3
. 

Corollary 1 

 Xa and Yb are uncorrelated, i.e., HXa, HYb  = 0 for 

every pair of vectors a and b if and only if X
T
HY = 0.  

5. FIVE PROPERTIES REQUIRED FOR A CLOSE-

NESS COEFFICIENT 

 The following properties from (C-1) to (C-5) are required 

a closeness coefficient , say
C

, between two configurations: 

(C-1): 0  
C

(
1

C ,
2

C )  1, for all 
1

C and
2

C ; (C-2): 

C
(

1

C ,
3

C ) = 
C

(
2

C ,
3

C ), for any 
3

C if 
1 2
= ; 
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(C-3): 
C

(
1

C ,
2

C ) = 1 if and only if 
1 2
= ; (C-4): 

C
(

1

C ,
2

C ) = 0 if and only if 
1

C and 
3

C  are orthogo-

nal; and (C-5): 
C

(
1

C ,
2

C ) =
C

(
2

C ,
1

C ), for any pair 

of 
1

C and
2

C . Specifically, the coefficient is required to 

be: between 0 and 1 for any pair of configurations (C-1); 

TRD-invariant, i.e., the same for all pairs of members from 

classes to which they belong (C-2); zero between orthogonal 

configurations from orthogonal classes (C-3); one between 

configurations from the same class (C-4); and symmetric 

between any pair of configurations (C-5).  

 Embedding configurations onto coordinate matrices, we 

may quantify the closeness coefficient between configura-

tions through a coefficient, say
M

, between coordinate 

matrices. In particular, this coefficient 
M

 is required to be 

invariant over choice of X 
1

M and any Y 
2

M , i.e., 

TRD-invariant (M-2). Again, 
M

must satisfy the following 

five properties corresponding to (C-1) to (C-5):  

(M-1): 0 
M

(X, Y)  1, for all X and Y. 

(M-2): 
M

(X, Y) = 
M

(X, Z) for any Z if 
   
d(X) = d(Y) . 

(M-3): 
M

(X, Y) = 1 if and only if 
   
d(X) = d(Y) .  

(M-4): 
M

(X, Y) = 0 if and only if Xa and Yb are uncorre-

lated for all a and b. 

(M-5):
M

(X, Y) = 
M

(Y, X), for any pair of X and Y.  

6. TRD-INVARIANT GOODNESS OF FIT OF PRO-

CRUSTES METHOD 

 The closeness of two configuration classes 
1

C and 
2

C  

can be defined by means of the distances between their asso-

ciated matrices in 
1

M and 
2

M , respectively. However, 

the distances should be the same over choice of pairs of X in 

1
M  and Y in 

2
M , i.e., the distances should be TRD-

invariant. Specifically, the distances between x(X + 

1
  x

T
)Rx and y(Y + 1

  y

T
)Ry must be identical over non-

zero scalars x and y, vectors x and y, and orthogonal 

matrices Rx and Ry. Such a TRD-invariant distance can be 

achieved by the following infimum, that is,  

   

min
X M

1{ }
min

Y M
2{ }

X Y
2

 = 

   

inf
x

0,
y

0{ }
min

x
,

y
,R

x
,R

y{ }
x
(X + 1

x

T )R
x y

(Y + 1
y

T )R
y

2
.  

This infimum is in fact the same as  

   

inf
0{ }

min
,R{ }

X 1
T

YR
2

, which is again the same as 

  

inf
0

min
R

HX HYR
2

. The orthonormal matrix that mini-

mizes the distance can be obtained by the Procrustes method 

[1,14-16]. 

 It is, however, necessary to normalize this infimum dis-

tance so that (X, Y) closeness can be compared to (X, Z) 

closeness for any Z. This can be achieved by normalization 

of the maximum of the above infima over all matrices with 

the same order. It follows that a goodness of fit coefficient, 

denoted by GF, of the Procrustes method can be constructed 

as: 

GF(X, Y) = 1

  

inf
0

min
R

HX HYR
2

max
w

inf
w

0

min
R

w

HX
w
HWR

w

2
. 

 It is clear by this definition that 0  GF(X, Y)  1, which 

satisfies property (M-1). It will be shown in what follows 

that GF satisfies all the properties required for a closeness 

coefficient. To this end, we start with the following proposi-

tion. 

Proposition 4 

 For any given matrix X,  

  

max
w

inf
w

0

min
R

w

X
w
WR

w

2

 = ||X||
2
.  

Proof 

 Since 
  
min

R

X YR
2

= ||X||
2
 + ||Y||

2
 – 

trace{(X
T
YY

T
X)

1/2
} for orthogonal matrix R [15], 

  

inf min
R

X YR
2

= ||X||
2
 + 

   
inf 2

Y
2

2 trace (X
T
YY

T
X)1/2{ }{ } . Therefore, the in-

fimum can be achieved when  

=
   
trace (X

T
YY

T
X)1/2{ } Y

2

. Furthermore, we have 

  

inf
w

min
R

w

X
w
WR

w

2

= ||X||
2
 – 

   
trace (X

T
WW

T
X)1/2{ } W

2

 for any W. It is because 

  

inf min
R

X YR
2

= ||X||
2
 – 

   
trace (X

T
YY

T
X)1/2{ } Y

2

 

for orthogonal matrix R and non-zero . Therefore we may 

define the second term on the right hand side as 0 if W = 0, 

so that 
  

inf min
R

X 0R
2

 = 
  

inf min
R

X
2

 = ||X||
2
. It follows 

that
  

max
w

inf
w

0

min
R

w

HX
w
HWR

w

2

  ||X||
2
. On the other 

hand, we have: 
  

max
w

inf
w

0

min
R

w

HX
w
HWR

w

2

  

  

inf
0

min
R

0

X
0
0R

0

2

 = ||X||
2
. QED. 
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 Due to this Proposition, the GF coefficient can be re-

duced to  

 GF(X, Y) = 1
  

inf min
R

HX HYR
2

HX
2

. 

 Furthermore, since 
  

inf min
R

X YR
2

= ||X||
2
 – 

   
trace (X

T
YY

T
X)1/2{ } Y

2

 for orthogonal matrix R and 

non-zero , the GF(X,Y) can be rewritten as  

GF(X, Y) = 
   

trace (X
T
HYY

T
HX)1/2{ }

2

HX
2

HY
2{ } ,    

              (3) 

where the function trace is the sum of diagonal elements of a 

square matrix. This equation shows that the GF coefficient 

satisfies property (M-2) because it is free of  and R, and 

thus TRD-invariant. For property (M-3), we have the follow-

ing Proposition. 

Proposition 5 

 trace{(X
T
YY

T
X)

1/2
}= ||HX||||HY|| if and only if HX = 

HYR for some non-zero scalar  and orthogonal matrix R.  

Proof 

 It is clear that the latter is sufficient for the former. The 

former implies that 
  

inf min
R

HX HYR
2

= 0 because 

   
trace (X

T
HYY

T
HX)1/2{ }

2

HX
2

HY
2

= 

1
  

inf min
R

HX HYR
2

HX
2

. Therefore, we have HX 

= HYR for some non-zero scalar  and orthogonal matrix 

R. QED. 

 It follows that GF(X, Y) = 1 if and only if X and Y be-

long to the same M , i.e., 
1

M = 
2

M = M . For prop-

erty (M-4), we have the following Proposition. 

Proposition 6 

 trace{(X
T
YY

T
X)

1/2
} = 0 if and only if X

T
Y = 0. 

Proof 

 It can be seen in the process of proof of Proposition 5 

above that the former implies that all the singular values of 

X
T
Y are zeros. Hence the latter follows. The converse is 

clear. QED. 

 It follows that trace{(X
T
HYY

T
HX)

1/2
} = 0 if and only if 

v(HX) is orthogonal to v(HY), i.e., Xa and Yb are uncorre-

lated for any pair of a and b. Finally, for property (M-5), we 

have the following Proposition that shows that the GF coef-

ficient is symmetric, i.e., GF(X, Y) = GF(Y, X) for any pair 

of X and Y.  

Proposition 7 

 trace{(X
T
YY

T
X)

1/2
} = trace{(Y

T
XX

T
Y)

1/2
}.  

 

Proof 

 Let X
T
Y 

svd

= U V
T
. Then (X

T
YY

T
X)

1/2
 = U U

T
. It fol-

lows that trace{(X
T
YY

T
X)

1/2
}= i i where i’s are the singu-

lar values. Similarly, (Y
T
XX

T
Y)

1/2
 = V V

T
. It follows that 

trace{(Y
T
XX

T
Y)

1/2
 = i i. QED. 

7. TRD-INVARIANT MATRIX CORRELATION CO-

EFFICIENTS 

 Closeness of homologous configurations 
1

C and
2

C  

can also be quantified by means of a correlation between two 

coordinate matrices X 
1

M  and Y
2

M  as follows [3]: 

corr(X,Y) = HX,HY /{||HX||||HY||}= trace(X
T
HY)/ 

{||HX||||HY||}. 

 Although the correlation corr(X,Y) clearly satisfies re-

quired properties (M-3), (M-4) and (M-5), it can be negative 

and is not invariant over orthogonal R because trace(X
T
HY) 

 trace(X
T
HYR) for every orthogonal matrix R.  

 We, therefore, examined whether the maximum correla-

tion  

CORR(X,Y) =
,

max
R

 corr(X, YR) 

between any pair of members (one from each set of 
1

M  

and 
2

M ) satisfies the five required properties including the 

TRD-invariance. First, it is obvious that CORR(X,Y) ranges 

between 0 and 1, satisfying (M-1). Second, due to the fol-

lowing Proposition 8, CORR(X,Y) is TRD-invariant, thus 

satisfies (M-2), and is in fact the Gower-Lingoes-

Schönenman coefficient [14, 17], denoted here by RGLS. That 

is,  

RGLS(X,Y) = trace{( X
T
HYY

T
HX)

1/2
}/{||HX||||HY||}.         (4) 

Proposition 8 

 The orthogonal matrix R which minimizes ||X  YR||
2
, 

for some non-zero , also maximizes X,YR  and 
  
max

R

 

X,YR  = trace{(X
T
YY

T
X)

1/2
}.  

Proof 

 For the first part, observe that 
  
min

R

X YR
2

 = ||X||
2
 + 

2
||Y||

2
  2 max

R

X,YR . The second part is clear since 

trace(X
T
YR)  trace{(X

T
YY

T
X)

1/2
} [15], with equality if X 

= YR for some orthogonal R. QED. 

 It follows that  

 CORR(X,Y) =
,

max
R

 corr(X, YR) = 

  

max
,R

HX, HYR HX HYR{ }  
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 = 
  
max

R

HX,HYR HX HY{ }  =  

trace{( X
T
HYY

T
HX)

1/2
}/{||HX||||HY||} = RGLS(X,Y).  

 Subsequently, this equation shows that based on (3) and 

(4), 

RGLS(X, Y) = 
  

GF(X, Y) .          (5) 

 This equation implies that RGLS is TRD-invariant, and 

proves that the maximization of inner product over rotation 

is equivalent to minimization of distances between coordi-

nate matrices by translation, rotation and dilation. 

 In fact, the RGLS coefficient (or GF) depends on X
1

M  

and Y
2

M  through their centered forms HXX
T
H and 

HYY
T
H. This relation is due to the fact that 

trace{(X
T
HYY

T
HX)

1/2
} = trace{(Y

T
HXX

T
HY)

1/2
} based on 

Proposition 7, and both ||HX|| and ||HY|| are a function of the 

centered forms. Moreover, the RGLS coefficient can be ex-

pressed as a function of singular values of HX and HY for 

X
1

M  and Y
2

M , respectively. To this end, let us de-

note the singular value decompositions of HX, HY, and 

X
T
HY by  

HX

svd

= Ux xVx
T
, HY

svd

= Uy yVy
T
 , and X

T
HY

svd

= U V
T
.   (6) 

 Although corr(Ux x,Uy y) does not satisfy the invari-

ance property, again its maximum over orthonormal matrix 

R does since max
R

corr(Ux x,Uy yR) = max
R

corr(X,YR) = 

RGLS(X,Y). It follows that 

RGLS(X,Y) = 
   
trace( ) trace(

x

2 )trace(
y

2 ) .        (7) 

8. COEFFICIENTS BASES ON CENTERED FORMS 

 A correlation between centered forms corr(HXX
T
H, 

HYY
T
H) is the same by definition as the RV coefficient of 

Escoufier [18,19]:  

corr(HXX
T
H, HYY

T
H) = trace(HXX

T
HYY

T
H)/ 

{||HXX
T
H||||HYY

T
H||}= RV(X,Y). 

 It is a normalized inner product between two centered 

forms, and can be interpreted as a pooled correlation coeffi-

cient of inner products of row vectors between HX and HY. 

The RV coefficient also satisfies all the required properties. 

In order to show this, it would be enough to hand the dilation 

factor by minimizing over  since every configuration class 

has a centered form that is unique up to a dilation factor (sec-

tion 2). To this end, based on Proposition 8, the RV can be 

rewritten as a minimum distance between two centered 

forms as follows: 

RV(X,Y) = 
   

1 inf HXX
T
H HYY

T
H

2

HXX
T
H . 

 Furthermore, the RV coefficient can be re-expressed as 

RV(X,Y) = corr(Ux x
2
Ux

T
, Uy y

2
Uy

T
), where HXX

T
H 

svd

= Ux x
2
Ux

T
 and HYY

T
H 

svd

=  Uy y
2
Uy

T
 as in (6). It follows 

that RV(X,Y) can be reduced to  

RV(X,Y) = 
   
trace( 2 ) trace(

x

4 )trace(
y

4 ) , 

a function of singular values only of the singular value 

decompositions like the RGLS coefficient as shown in equa-

tion (7). Finally, based on the equation (1), it can be shown 

that  

RV(X,Y) = corr(H
  1

2
H, H

  2

2
H), 

which is a correlation between the double centered squared 

distances matrices. This implies that the RV coefficient is 

ready to be obtained without obtaining coordinate matrices 

when squared distances matrices are given.  

9. DISCUSSION 

 We have shown that development of a closeness coeffi-

cient that satisfies the five properties was possible by mini-

mization of distances between coordinate matrices, maximi-

zation of correlation between them, or correlations between 

unique representations of configurations. The notion of mini-

mization of distances between matrices over the two sets is 

shown to be equivalent to that of maximization of correlation 

by Proposition 8 that resulted in equation (5) between GF 

and RGLS. A univariate analogy is that the goodness of fit R
2
 

obtained from a simple linear regression is the square of the 

Pearson correlation between the dependent and independent 

variables. Furthermore, both RGLS and RV are shown to be a 

function of unique representations of configurations through 

centered forms or singular values of the coordinate matrices. 

As a result, those existing matrix correlation coefficients are 

now proven to satisfy the five properties, including the 

“zero” property under the newly introduced orthogonality of 

configurations in section 5. 

 Comparison between RGLS and RV is discussed in [4] and 

ranges of RV in terms of RGLS, or vice versa, are suggested in 

[20]. The permutational distribution of the RV coefficient 

under permutation of homologous objects is derived in [21]. 

The distribution can be used to test significance of RV bet- 

ween homologous configurations. As far as lower-rank ap-

proximations are concerned, Heo and Gabriel [5] discussed 

behaviors of RGLS with varying dimensions of coordinate 

matrices, and Heo [22] discussed distributions of RGLS under 

a null situation.  

 Another approach of developing a closeness coefficient 

could be to deal directly with the distance sets 1 and 2. This 

approach is attractive because the distances are unique up to 

a dilation factor for every configuration class, even if not 

Euclidean. In this context, Mantel’s cosine coefficient [23], 

cos( 1, 2) = 1, 2 /{|| 1|||| 2||}, can serve for that purpose. 

This coefficient is simple, intuitive, and practical because the 

distances are given in practice more often than not. In addi-

tion, this coefficient is clearly unique between configuration 

classes because it is invariant over dilation. Therefore, 

cos( 1, 2) is TRD-invariant. Nevertheless, cos( 1, 2) is not  
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necessarily zero when two configuration classes are or-

thogonal. In fact, this coefficient is zero if and only if either 

of the two configuration classes is a point, i.e., of zero di-

mension.  

 In summary, RGLS, GF, and RV can be used as a close-

ness coefficient of homologous configurations, and each 

depends on coordinate matrices through their centered forms 

or singular values.  
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