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Abstract: In this article we shall give some necessary and sufficient conditions for a discrete law F such that the 

asymptotic equivalence 

  
EX

n

μ  (EXn)
 
(EXn  ) 

takes place for all positive . An extension to the class of regularly varying moments is also given.  

1. INTRODUCTION  

 For a sequence of random variables (Xn) define a discrete 
probability law F by 

P{Xn = k} = pnk   0,     k = 0, 1, 2, ··· ,n;   

  

p
nk
= 1.

k=0

n

 

 Define as usual the expectation EXn and variance 
2
Xn as  

EXn := 

  

kp
nk

;
k=1

n

     
2
Xn := 

  
EX

n

2  
 (EXn)

2
; 

moments of the m-th order are  

   
EX

n

m
:= k m p

nk
, m = 2, 3, .  

 The question of moments convergence is a difficult one 
and entirely depends on the characteristics of the law F.  

 But if  

EXn   (n  ) 

then, due to Jensen’s inequality, all other moments are also 
unbounded and there is the problem of their asymptotic 
evaluation.  

 In this paper we shall give some conditions such that the 
asymptotic equivalence  

 
EX

n

μ  
 (EXn)

 
(n  )  (1) 

holds for all real  > 0, whenever EXn   (n  ).  

2. RESULTS  

 It turns out that, under a specific conditions, the validity 
of the asymptotic relation (1) for some  = m > 1, implies its 
validity for all moments of lesser order. This result is 
characterized in the first proposition.  
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Proposition 1. Let m > 1 and EXn   (n  ); then the 
asymptotic equivalence  

 
EX

n

μ  
 (EXn)  

holds for each real , 0 <   m, if and only if  

  

lim sup
n

EX
n

m

(EX
n
)m

1.  (2) 

 Another quite unexpected result is the following  

Proposition 2. If EXn   and the probability generating 
function Es

X
n,  

  

Es
X

n := p
nk

sk
,

k=0

n

 

belongs to the class H of Hurwitz polynomials, then the 
relation  

 
EX

n

μ  
 (EXn)

 
(n  ) 

holds for each  > 0.  

 Recall that the class H consists of all polynomials with 
non-negative coefficients whose zeros lie entirely in the left 
complex half-plane (including imaginary axes). This class is 
of importance in Mechanics and the Theory of Dynamic 
Stability [1].  

 Another statement concerning Hurwitz polynomials 
follows  

Proposition 3. Let Hn(c) := 
  

a
nk

c
k
,

k=0

n

 Hn(c)   H.  

 For a sequence of random variables (Yn) define the 

probability law FH, with a parameter c > 0, as  

PH{Yn = k} := 

  

a
nk

c
k

H
n
(c)

,   k = 0, 1,···, n.  

If, for some c > 0, EHYn =  

   

cH
n
(c)

H
n
(c)

     (n  ), then  

 
E

H
Y

n

μ  
 (EHYn)

       
(n  ) 
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for each  > 0.  

 Further generalization leads to the concept of regularly 
varying moments [2, p. 335].  

 It is said that the function  is
 

slowly varying in 
Karamata’s sense if it is positive, continuous and satisfies 
( x)  (x), (x  ) for each  > 0 [2, p. 6].  

Some examples of slowly varying functions are  

1, (logx)
a
,  (log log x)

b 
,  exp((log x)

c
);  a, b  R, 0 < c < 1. 

 The expression  

   

EX
n

( X
n
) := k (k) p

nk
k=1

n

 

is called regularly varying moment of order .  

 For asymptotic behavior of those moments we have  

Proposition 4. If  

(i) 1/EXn = O(1/n);     (ii) 
2
(Xn)= o(n

2
)     (n  ),  

then the asymptotic relation  

   
EX

n
( X

n
)   (EXn)

 
(EXn)     (n  ), 

holds for each  > 0 and every slowly varying function (·).  

3. PROOFS  

 It is obvious that the condition (2) is necessary for 
 
EX

n

m
 

 (EXn)
m 

to hold. We shall prove that it is also sufficient for 

the statement of Proposition 1.  

 Indeed, since m > 1, by Jensen’s inequality [3, p. 104] it 
follows that  

 
EX

n

m
  (EXn)

m 
. 

 Therefore by (2),  

  

1 lim inf
n

EX
n

m

(EX
n
)m

lim sup
n

EX
n

m

(EX
n
)m

1.  

i. e.,  

 
EX

n

m
  (EXn)

m
     (n ).  (3) 

 Now we shall prove the case 0 <  < m. For this purpose 
we need well-known Liapunov moments inequality [3, p. 
110].  

Lemma 1. For 0 < a < b < c, we have  

  
(EX

n

b )c a (EX
n

a )c b(EX
n

c )b a .  (4) 

 Applying (4) for 1 <  < m, we get 

  
(EX

n

μ )m 1 (EX
n
)m μ (EX

n

m )μ 1.  

 By this and Jensen’s inequality we obtain  

  

1
EX

n

μ

(EX
n
)μ

EX
n

m

(EX
n
)m

μ 1

m 1

.  (5) 

 For 0 < < 1, Jensen’s inequality gives  

 
EX

n

μ
  (EXn) . 

 Combining this with (4), (a = , b =1,c = m) we get  

  

1
EX

n

μ

(EX
n
)μ

EX
n

m

(EX
n
)m

(1 μ )

m 1

.  (6) 

 Hence, letting n  , by (3), (5) and (6) we obtain the 
assertion of Proposition 1.  

Proof of Proposition 2  

 This is a consequence of the assertion from Proposition 3 
below, with  

c := 1; ank/Hn(1) := pnk. 

Proof of Proposition 3  

 In the sequel we shall need the following  

Lemma 2. For any H   H and thus induced law FH, we 
have  

0  
  H

2 (Y
n
)  < 2EH(Yn). 

Proof: From the basic algebra theorems and definition of 
Hurwitz polynomials, we get the representation  

  

H (c) = H
n
(c) = a

nn
(c + z

nk
), a

nn
> 0, z

nk
0.

k n

 

Hence,  

   

E
H
Y

n
= ka

nk
c

k / H (c) =
cH (c)

H (c)
=

k n

c

c + z
nkk n

= u
nk
=

k n

u
nk

k n

,  

and 

  
H

2 (Y
n
) = c

d

dc
(E

H
Y

n
) =

cz
nk

(c + z
nk

)2
k n

=
nk
=

k n

nk

k n

,  

Since c > 0, 
 

z
nk

  0, we get  

  

0 nk

u
nk

=
z

nk
(c + z

nk
)2
+ ( z

nk
)2 (2c + z

nk
)

(c + z
nk

)((c + z
nk

)2
+ ( z

nk
)2 )

< 2.  

Therefore,  

  
H

2 (Y
n
) =

nk

k n

= u
nk

k n

nk

u
nk

< 2 u
nk

k n

= 2E
H
Y

n
,  

and the proof is done.  

 Let us consider now a sequence of polynomials (Hm(c)),m 
= 1, 2, ··· given by the recurrence relation  

Hm(c) = 
   
cH

m 1
(c),      H0(c) = H(c). 

 We have   

Lemma 3. For each m  N,     Hm(c)  H. 

Proof: Suppose that Hm 1(c)   H. By well-known Gauss 
Theorem, the zeros of 

   
H

m 1
(c)  are not away from the 

convex polygon enveloping the zeros of Hm 1(c). Therefore, 
all zeros of 

   
cH

m 1
(c)  also belong to the left complex half-

plane i. e. Hm(c)   H. Since H0(c) = H(c)   H, the proof 
follows by induction in m.  
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 Because 

  

H
m

(c) = k
m
a

nk
c

k , m N ,
k n

 

we get  

  

(i)E
H

m

Y
n
=

H
m+1

(c)

H
m

(c)
; (ii)

H
m

2 (Y
n
) = E

H
m+1

Y
n

E
H

m

Y
n

(E
H

m

Y
n
)2 .  

 Combining (ii) with Lemmas 2 and 3, we obtain 

  
E

H
m+1

Y
n

E
H

m

Y
n
=

H
m

2 (Y
n
) / E

H
m

Y
n
< 2,  

i. e. by summing  

   
E

H
m

Y
n
< E

H
Y

n
+ 2m, m = 1,2,  (7) 

Now, from (i) and (7), it follows that  

  

E
H
Y

n

m
=

H
m

(c)

H (c)
= E

H
k

Y
n

k=0

m 1

< (E
H
Y

n
+ 2k).

k=0

m 1

 

 Since by assumption EHYn   (n  ), this gives 

  

lim sup
n

E
H
Y

n

m

(E
H
Y

n
)m

1.  

 Hence, by Proposition 1 the assertion from Proposition 3 
follows.  

Proof of Proposition 4  

 Note that the conditions (i) and (ii) imply  

EXn   (n  ), 

and  

2
(Xn) = 

  
EX

n

2  
 (EXn)

2  
= o(n

2
) = (n/EXn)

2 
o((EXn)

2
) 

= O(1)o((EXn)
2
) = o((EXn)

2
). 

Hence  

  
EX

n

2
  (EXn)

2
     (n  ). 

Also,  

o(n
2
) = 

2
(Xn) = E(Xn  EXn)

2
  (E|Xn  EXn |)

2
; 

i. e.,  

E|Xn  EXn | = o(n)     (n  ).  (8) 

 We consider firstly the case (x) = 1,   N.  

 Let q > 2, q  N. We have  

0  n,q := 
 
EX

n

q  
 EXn

  
EX

n

q 1  

  

= k q 1

k n

pnk(k  EXn)  n
q 1

E|Xn  EXn|. 

 Applying the condition (i) and (8), we get 

  

n,q

(EX
n
)q

 = o(1)(n/EXn)
q
 = o(1)O(1) = o(1)     (n  ). 

 Finally, by the triangle inequality it follows  

  

|
EX

n

q

(EX
n
)q

1| |
EX

n

q 1

(EX
n
)q 1

1|+
n,q

(EX
n
)q

,  

and the proof can be carried out by induction in q.  

 Since q > 2 is arbitrary, by Proposition 1 it follows that 
the proof is valid for all  > 0 and (x) = 1. For the general 
case we need the next  

Lemma 4. If the matrix {Ank} satisfies  

  

(i) A
nk

1; (ii)
k n

k
v | A

nk
|= O(n

v ) (n )
k n

 

with some  > 0, then  

   

A
nk

(k) (n) (n )
k n

 

for each slowly varying (·) (cf [4]).  

 Putting Ank  := k pnk /
  
EX

n
;   := /2, we get  

   

A
nk
= 1;

k n

k
v
A

nk

k n

= EX
n

/2 / EX
n

(EX
n
) v

= O(n
v ) (n )

 

 Therefore, by Lemma 4 we have  

   

(k / EX
n

k n

) (k) p
nk

(n) (n ).  

 Since 1  n/EXn = O(1) (n  ), the Uniform 
Convergence Theorem [2, p. 6] gives (n)  (EXn), and we 
finally obtain  

   

EX
n

( X
n
) := k (k) p

nk
k n

  (EXn) (EXn)     (n ). 

4. EXAMPLES  

 We shall apply our results on some well-known 
probability laws. Let us to consider firstly the Gaussian 
Hypergeometric Law given by  

  

P{X
n
= k}=

M

k

N M

n k
/

N

k
.  

 Choosing parameters M and N such that  

N = 2M = 2n + 2A,     A  0, 

we obtain that the probability generating function Es
X

n
 
,  

  

Es
X

n =
2n+ 2A

n

1

n+ A

kk

n+ A

n k
s

k
.  

is from the class of ultraspherical polynomials [5, pp. 81-
86].  

 Because of orthogonality, all their zeros are real and 
negative i. e.  

Es
X

n
 

 H. 

 Since EXn = n/2, it follows that we can use Proposition 2 
to determine asymptotic behavior of all moments of positive 
order.  

 Much stronger result can be obtained if we notice that in 
this case [3]  

  

2 ( X
n
) =

n(n+ 2A)

4(2n+ 2A 1)
= o(n

2 ) (n ).  
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 Therefore, applying Proposition 4, we obtain asymptotic 
behavior of regularly varying moments  

   

EX
n

( X
n
) :=

2n+ 2A

n

1

k (k)
k

n+ A

k

n+ A

n k

2 n (n) (n ),

 

valid for each slowly varying function (·) and   R
+
.  

 Our second example is the classical Binomial Law, 
defined by  

P{Xn = k} = 

 

n

k
p

k
(1  p)

n k
,     0 < p < 1, 

In this case EXn = np; 
2
(Xn) = np(1  p). Hence, by 

Proposition 4 we get  

   

k (k)
n

kk n

pk (1 p)n k (np) (np) p n (n) (n ).  

for each slowly varying (·) and   R
+
.  
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